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For most recreation demand data sets, different individuals visit different subsets ot
the available sites Interior solutions (1.e. individuals who visit all recreational sites)

are not the norm Eoundary solutions (1 ¢ |

individuals who do not participate. or who

visit some, but not all. of the sites) predominate. We critique eight demand models 1n
terms ot therr ability to accommodate boundary solutions. Three models are
recommended for consideration when there are multiple sites and the data set includes
a significant number of boundary solutions: a repeated nested-logit model. a

multinomial share model, and a Kuhn-Tucker model.
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Consider a sample of individuals who may or
may not participate in a site-specilic recre-
ational activity such as fishing. Each individual
has more than one site to choose from and,
through the course of the season. will choose
how many trips to take to each of the available
sites. Individuals may choose no trips. Assume
there are complete trip records for the season
for each individual in the sample, and consider
the problem of modeling the number of trips
each individual takes to each site.

While the problem has many aspects, we con-
centrate on the fact that. for most recreation de-
mand data sets, individuals choose different
subsets of the available alternatives. Interior so-
lutions (i.e., individuals who visit all recre-
ational sites) are not the norm. Boundaries (i.e.,
individuals who do not participate, or who visit
some, but not all, of the sites) predominate. In
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this paper we consider how best to model this
aspect of recreation demand.

Concern for this topic is not new. Hanemann
lays out the problem of boundaries, but restricts
his analysis to cases where the individual is
constrained to consume only one of the alterna-
tives. Hanemann notes for demand theory in
general that “This is a 1estrictive assumption,
but it is employed in almost all ot the theoreti-
cal and empirical literature on discrete/continu-
ous choice™ (p. 543), and "“One would like to
allow tfor a more general corner solution in
which the consumer may select any subset of
the brands-—not necessarily one of them, but
not necessarily all of them™ (p. 560). The prob-
lem of boundaries 1n recreational demand is ex-
tensively discussed tn Bockstael, Hanemann,
and Strand (chap 8). A characterization ot the
problem that is consistent with constrained util-
ity-maximivzing behavior. but deterministic, is
presented in Kling. See Bockstael, Hanemann,
and Kling: Bockstael, McConnell, and Strand:
and Loomis and Ward for general surveys of
recreational demand modeling.

In the multiple-site context, concern about
boundaries has led to development of repeated
discrete-chorce models of recreational demand
and the multinomial share models of site
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choice.! For single sites, the only boundary so-
lution that is observed is nonparticipation (i.e..
zero trips).? In the single-site context, concern
for the influence of nonparticipation on demand
and benefit estimation has motivated the esti-
mation of tobit models and modified tobit mod-
els (Bockstael. Hanemann, and Strand; Kling:
and Smith), other truncated models of recre-
ational demand (Shaw), and the recent count
models of recreational demand (Smith: Creel
and Loomis; Hellerstein: Hellerstein and
Mendelsohn).?

The intent of this paper is to critique existing
and proposed models of recreational demand in
terms of their ability (or inability) to success-
fully accommodate boundaries. Seven existing
models and one new model are considered. The
purpose is to leave the reader with a better un-
derstanding of what the theoretical constraints
(both economic and statistical) and data con-
straints (proportion of boundary observations)
mean for the estimation of recreational demand.

A General Model of Participation and Site
Choice

To make multisite demand concrete, assume
that during the season the angler chooses from
a vector of J alternatives where x, is the chosen
number of trips to site j, j=1,2,....J -1, and
x, is the number of days the individual chooses
not to fish. Alternatively, the J alternatives in
the model could all be sites if the number of
trips is exogenous. We will adopt the first inter-
pretation, but all the issues and models dis-
cussed are also relevant in the more restrictive
case where nonparticipation is not modeled.
Boundary solutions dominate because few indi-
viduals visit all of the sites.

Individual preferences, defined over the sca-
son, can be represented by the direct random
utility function

' Numerous authors have proposed and/or estimated repeated
discrete-choice models of recreational demand See Feenberg and
Mills, Caulkins, Bishop, and Bouwes (1984, 1986), Bockstael
Hanemann, and Strand., Carson, Hanemann, and Wegge, Morcey
Shaw, and Rowe, Morey and Rowe, and Morey. Rowe, and
Walson For multinomial share models see Morey (1981, 1984,
1985) and Morey and Shaw

2 The only other boundary 1n the single-site context 1y all of the
season at the site, and no time at home This boundary 15 not ob-
served

' There 1s. 10 addition, an extensive literature on the eshmation
of single-site demand when the data set excludes nonparticipation,
that 15, when boundary solutions are excluded from the sample For
areview of the issues see Bockstael, Hanemann and Strand (chap
31, and Bockstael et al
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(l)y U = Ux, a, €)

where a = [q¢,,], with a,, the magnitude of at-
tribute £ the individual associates with alterna-
tive j, for k = 1, 2, ..., K. These magnitudes are
observed by both the individual and the investi-
gator.

Variable € is a vector of influential determi-
nants of the preference ordering that are known
to the individual. but are random variables from
the investigator’s perspective. The elements of
€ may or may not be correlated across sites and/
or trips.

Notice that the season is the decision period.
This 1s less restrictive than assuming each day
or week in the season is an independent choice
occasion. The preferences, equation (1). are
sufficiently general to encompass the prefer-
ences assumed in many popular recreation de-
mand models (e.g.. discrete choice models, a
single-site demand function. systems of site-
specific demand functions, count models, tobit
models, etc.).

Given a seasonal budget. B, the individual
maximizes equation (1) subject to the con-
straint B > p’x, where p, is the cost of a trip to
site 7, = 1,2, ....J — 1, and p, is the cost of a
day at home. The resulting demand functions
are

(2) x, = x(B.p.a.g) j=1.2, ...

These demands are random variables from the
investigator’s perspective: their expectation is
denoted Ejx) = X-J.

For estimation purposes, an alternative and
often more convenient way to represent the so-
lution to the individual’s utility maximization
problem is the system of share functions, where
s, is the proportion of choice occasions that al-

/
ternative j is chosen

=5 (B.pag) j=1.2,..J

with expected shares E[s ) = §,. Demand func-
tions and share functions should be viewed as
simply two different ways to express the solu-
tion to the utility maximization problem, rather
than as different models. Modeling and estima-
tion requires specification, or derivation, of a
probability rule for either the vector of de-
mands or vector of shares. A probability rule is
a mathematical function that indicates how the
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random demands (shares) are distributed. Prob-
ability rules for continuous random variables
are called density functions, and for discrete
random variables are called mass functions. De-
note a random variable that is continuous over
part(s) of its domain but discrete over other
parts of its domain a mixed random variable,
and denote probability rules for mixed random
variables continuous/discrete probability rules.

It is often easter to work with probability
rules defined over shares than probability rules
defined over demands because the restrictions
on shares (constrained to the zero-onc interval,
sum to one) are simpler to impose than the re-
strictions on demands (budget exhaustion and
nonnegativity).

Modeling interiors and boundaries requires a
probability rule for the shares that fulfills all
the properties of shares, includes boundaries in
its domain, and, in addition, admits the possi-
bility of observing a significant number of
boundaries. In the next section, we describe the
properties such a probability rule must have.

We are concerned with modeling boundaries
and interiors 1n s tuations where there are three
or more alternatives in the choice set (nonpar-
ticipation and at least two sites).* In this mul-
tiple-site framework, nonparticipation (zero
trips) is simply one of the many possible types
of boundary solutions. In contrast, when there
is only one site in the choice set, the problem is
one of modeling the number of trips each indi-
vidual takes to the single site, and the only ob-
served boundary solution is nonparticipation
(zero trips). Much research has been done to in-
corporate this sirgle boundary solution (non-
participation) into single-site models of recre-
ational demand.® In contrast, in this paper we are
concerned with the problem of modcling recre-
ational demand with multiple sites, where it is
important to estimate the allocation among sites,
and where the data set contains significant num-
bers of different types of boundary solutions.

Properties of the Probability Rule

The choice of the probability rule is dictated by
the restrictions the theory and constraints im-
pose on observed demands. Specifically, all

* Or, 1f nonparucipation 1s not modeled, at least three sites

° See. tor example Bockstael, Hanemann, and Strand. Kling,
Shaw. Smtth; Creel and Loomis Bockstael et al Hellerstein, and
Hellerstein and Mendelsobn These models are someumes applied
to data sets with multiple sites, but tn estimation the tips are
grouped together and not modeled by site, that 15, the number of
trips are estimated, but not their destinations
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Figure 1. The Unit Simplex (J = 3)

shares, s, . must be bounded by zero and one (0
<5, < 1) and sum to one. so only J — 1 of the
shares can independently vary; that is s, = | -
3., 8- | #i. The probability rule for the J
shares, f(s,, s,. ..., s, is therefore defined over
a J — 1 unit simplex. with s, defined as the re-
sidual 5, = 1 Y] s, .° For example, if there
are threc alternatives (two sites and nonpartici-
pation). the probability rule f(s,, s,, s,) is de-
fined over the two-dimensional {s,, s5,} right
triangle, where v, = 1 — s — s,. See figure 1. A
probability rule with positive density or mass
outside of the unit simplex is inconsistent with
the concept of shares. Choice of an appropriate
probability rule is therefore restricted to those
whose domain 1s restricted to the unit simplex.
An observed share vector in the interior of this
simplex is an interior solution; those on the
boundaries are boundary solutions. Hanemann
denotes solutions where only one of the ob-
served shares is positive and the rest zero as ex-
treme corner solutions.

If all of the observed shares in a data set are
positive, it is defensible to consider only prob-
ability rules that restrict themselves to the inte-
rior of the unit simplex. However, observed
boundaries are inconsistent with such probabil-
ity rules Data sets that contain numerous

A J - 1 unit simplex 1s a night sosceles triangle n J - | di-
menstonal space whose legs are umity Dual to this umit simplex for
the shares, the probability rule for the demand functions 1y defined
over a J - 1 night tnangle whose length in the yth direction 1s the
maximum number of times the indtvidual can aftord to choose that
allernative
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Figure 2. A continuous distribution of the Unit
Simplex (J = 2)

boundary solutions require probability rules
that have positive mass on the boundaries of
the unit simplex. The stochastic modeling of
shares that can repeatedly assume the same
value (e.g., zero) is a difficult, nontraditional
problem in statistics. The problem is easy to ap-
preciate: for continuously distributed shares,
the probability of many shares with the same
value is zero.

Some examples will help clarify these points.
A continuous distribution defined over the unit
interval (the J = 2 case because it is casy to
graph) is the beta distribution (a special case of
the Dirichlet distribution). shown in figure 2.
This would be an appropriate stochastic as-
sumption for a data set that included only inte-
rior solutions: since f{(s,) = 0 for s, = 0 and s, =
1, it is inconsistent with an observed share of
zero or one. Next consider a density, illustrated
in figure 3, that is consistent with a data set that
contains one or at most a few zeros or ones, but
would be inconsistent with a data set that in-
cluded a significant number of boundary solu-
tions (or a significant number of like observa-
tions of any one value). In figure 3, there is a
positive density at the boundaries [f{0) > 0 and
f(1) > 0]. There are many discrete distributions
consistent with a significant number of bound-
ary solutions, such as the one shown in figure
4. A problem with using a discrete distribution
is that numerical values for shares not explic-
itly part of the distribution have zero probabil-
ity. A mixed distribution, the one shown n fig-
ure S for example, can accommodate any ob-
served share value and a significant number of
boundary solutions.
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Figure 3. A continuous distribution on the Unit
Simplex (J = 2) with positive density at zero
and one

The Search For a Probability Rule
Consistent with Observed Boundaries

The difficulties associated with the task of find-
ing a probability rule to model numerous
boundary solutions is made even more difficult
if shares are to be consistent with constrained
utility-maximizing behavior. Seven existing de-
mand models, and one new multisite demand
model are critiqued in terms of their ability (or
inability) to accommodate boundaries. This
section divides models of interiors and bound-
aries into three categories: models that assume
shares are continuously distributed random
variables, models that assume shares are dis-
crete random variables, and models that assume
shares are mixed random variables.

Shares that are Continuous Random Variables

First, consider models that assume shares are
continuously distributed random variables. In
this category, the traditional approach is to as-
sume that J — | shares, or demands, are multi-
variate normally distributed, and that the ex-
pected values of these shares solve a determin-
istic constrained utility maximization problem.
However, the normality assumption is inconsis-
tent with the properties of both share functions
and demand functions (Woodland). Specifi-
cally, normally distributed shares are not re-
stricted to the unit simplex, so there is a posi-
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Figure 4. A discrete distribution on the Unit
Simplex (J = 2)

tive probability of shares both greater than one
and less than zero. In addition, because a nor-
mally distributed random variable has positive
density, but not positive probability at zero and
one, it admits the possibility of boundaries, but
it is inconsistent with a significant number of
boundaries. In spite of this inconsistency,
shares (or demands) are assumed normally dis-
tributed in much empirical work. Normality is
defended as a reasonable approximation for
data sets that include only interior solutions
(Woodland), but cannot be justified for data
sets that include a significant number of bound-
aries.” These conclusions also apply to other
density functions that are not restricted to the
unit simplex.

Because density functions for shares must be
restricted to the unit simplex, Woodland has
suggested the use of the Dirichlet distribution

J .
(4)  fUS, 80083 5 X0 X)) = KT s, 0,
=1

¥, >0and0<s <1VJ, and ¥ s, =1

j ~
T2 x,
K=—~

=— -,
[Ira)
=1

where

" Data sets with significant numbers ot observed boundanes are
hustorically quite recent When demand systems were mostly de-
tined 1n terms of broac aggregates such as food clothing, and
housing. everyone cansumed same of each category It s the
emerging prevalence of micro data sets where there s information
on each mdividual’s consumption of a large number ot individual
goods that has created th2 empirical problem of boundaties

O
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Figure 5. A mixed discrete/continuous distri-
bution on the Unit Simplex (J = 2)

and I'(.) ts the Gamma tunction.

The Dirichlet distribution, unlike the normal
distribution, is consistent with both shares sum-
ming to onc and being bounded by zero and one
(0 <5, < 1. However, the Dirichlet distribution
only has positive density in the interior of the
unit simplex, so bounduries are mnadmissible.
Therefore. the Dirichlet distribution is suitable
for systems of share equations if all of the ob-
servations are interior solutions, but not if the
data set includes boundaries. In fact, because
there is no density at zero or one, the Dirichlet
canpnot be used to estimate data sets that include
zero shares.

There are no multivariate density functions
with positive density over the entire unit sim-
plex, including boundaries, and restricted to the
unit simplex. They must be created by starting
with a density function that includes the unit
simplex and truncating to zero those parts of
the density function outside of the unit simplex.
For example, the density that is outside of the
unit simplex could be uniformly added to the
density over the unit simplex.* This approach
was pursued by Marey (1984, footnote 4) with
a multivariate normal distribution. This class of
density functions, called truncated/uniformly-
added density functions, has two desirable
properties with respect to share equations: it
restricts the shares to the unit simplex and ad-
mits observed boundaries. However. truncated/
uniformly-added density functions, like other
density functions, associate zero probability
with observing a significant number of bound-
aries (see, tor example, figure 3). Therefore,
like all models that assume the shares are con-

¥ tormally, detine some continwous random variable o [f 1ty
density function f(®) 15 detined over R. and the density 15 truncated
10 7210 below @ = ¢, then the truncated/umiformly-added density
tunction 1s flw)/[ | - Fta)] where F( )15 the CDF of o
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tinuously distributed random variables, they are
inconsistent with data sets that contain a sig-
nificant number of observed boundaries. How-
ever, these models can be estimated with such

data sets, and may produce acceptable results if

there are only a few boundaries

Shares that are Discrete Random Variables

Assuming that trips to the J sites take only non-
negative integer values, observed shares will be
discrete, rather than continuous, random vari-
ables. This assumption is a simple, but restric-
tive, way to accommodate observed boundaries.

Given that trips can only be taken in nonne-
gative integer units, the mass function for the
trips can be represented by a multinomial dis-
tribution

5y  flx,x,.....x,:7,0,0,,....0,)

TV

i)™

where 6,. 0,, ..., 6, are parameters of the dis-
tribution, and T is either fixed or an additional
parameter. The multinomial distribution re-
stricts the shares to the unit simplex. and it can

attach positive probability to any vector of
shares consistent with the integer nature of

trips, including those that involve boundaries.
This makes the multinomial model well suited
for modeling and for estimating with data sets
that include significant numbers of boundaries.
The multinomial is restrictive in that it requires
trips to site k£ be negatively correlated with trips
to site I, for all kK and i.

The only modeling issue is specification ot 6
and 7 to make these parameters consistent with
constrained utility-maximizing behavior, and to
make the model empirically tractable. If T is
the number of independent choice occasions
during the season and 6, is the per-choice oc-
casion probability that alternative j will be cho-
sen, then the multinomial is a repeated discrete-
choice model of alternative selection (e.g., re-
peated logit or nested-logit models of participa-
tion and site choice).” If 7T = Z x, and 6 =

/
.v . the model is the multinomial sharc model of

? See Carson, Hanemann, and Wegge, Morey, Shaw, and Rowe
Khng and Thomson, Morey and Rowe, and Morey, Rowe and
Watson
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Morey (1981, 1984,
Shaw.

Repeated discrete-choice models of participa-
tion and site choice assume the season can be
divided into a discrete number of choice occa-
sions, 7, where 6, is the per-choice occasion
probability that alternative j is chosen. These
probabilities are derived by specifying condi-
tional indirect utility functions for each of the
alternatives (the J — | sites and the nonpartici-
pation alternative) as a function of the budget,
the cost of the alternative, characteristics of the
alternative, and a random component. These
models are random utility models. If these ran-
dom terms are independent drawings from an
extreme value distribution, the model is a re-
peated logit model of participation and site
choice. If the drawings are from a less restric-
tive form of the generalized extreme value dis-
tribution, the model is a repeated nested-logit
of participation and site choice. Two restrictive
separability assumptions in both the repeated
logit and nested-logit models are that (a) the
deterministic component of utility from alterna-
tive j is not a function of the attributes of the
other alternatives, or even of the attributes of
that alternative on other choice occasions; and
(b) the random components are statistically in-
dependent across choice occasions. The re-
peated logit model of participation and site
chotce imposes the additional separability re-
striction of complete statistical independence
(i.e.. all random components uncorrelated).

A drawback of discrete-choice RUMs of site
choice is how they achieve consistency with
constrained utility maximization over the sea-
son. We are uncomfortable with assuming that
the season consists of a finite number of inde-
pendent choice occasions, where the probability
of visiting site j on a given trip is independent
of where the individual went on prior trips and
where the individual might go on future trips.
However, because of this restrictive assump-
tion, repeated nested-logit models are both easy
to estimate and consistent with constrained util-
ity-maximizing behavior. This makes them at-
tractive for data sets that contain significant
numbers of boundary solutions.

Alternatively, one can adopt the discrete-
choice multmomia] model of site choice and as-
sume 9, , (the expectation of the share for
site j), where T is the observcd number of trips
plus days at home (7 = Z,’ (X, + x)), and where
the expected shares are derlved by maximizing
expected seasonal utility, E{U(x, a, €)], subject
to the constraints B = p’x and E{ €] = 0. The
multinomial share model associates positive

1985) and Morey and
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probability with observed interiors and bound-
aries. This model is consistent with maximizing
utility subject to the seasonal budget constraint,
but the expected share, §,, is not constrained
by the integer nature of trips: the integer con-
straint is accommodated by the stochastic
specification, tte multinomial. The multmomial
share model is therefore consistent with con-
strained utility-maximizing behavior.

In addition, the multinomial share model, un-
like the repeated discrete choice models, does
not impose strong separability across choice
occasions. Given this, and the ease with which
the multinomial share model can be cstimated,
it is a viable candidate for estimation when the
data contain significant numbers of observed
boundaries. This is particularly true when it is
difficult to justily the assumption that the prob-
ability of visiting a site, on a given choice oc-
casion, is independent of where the individual
has been or might go.

Shares that are Mixed Random Variables

First, consider out-of-simplex truncation where
a density function for some J — | dimensional
random variable § is chosen such that § in-
cludes the unit simplex as a subset. The prob-
ability rule for s is created by truncating to zero
those parts of the density function for s that are
outside of the unit simplex, and adding the den-
sity of § that was outside of the unit simplex to
the boundaries of the unit simplex. Typically,
out-of-simplex truncation is defined as

(6) 5,=0 if 5, <0 and
§
s, === if 5§, >0 where M = (j: § >0}.
’ S,
leM

This type of truncation is referred to as out-of-
simplex truncation because all of the density
outside of the unit simplex is truncated.

Probability rules for shares created by out-of-
simplex truncation have desirable boundary
properties. Specifically, shares are restricted to
the unit simplex and the probability rule admits
data sets that include significant numbers of
observed boundaries. A problem with out-of-
simplex truncation is that the proportional ex-
pansion of the shares that are positive is not, in
general, consistent with maximizing U(x, a, €),
subjectto B> p'x and x > 0.

While out-of-simplex truncation could be ap-
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plied to any multivariate density function de-
fined over the unit simplex and some or all of
the space adjacent to it, all examples we are
aware of assume § is multivariate normal. For
example. if J = 2 and normality is assumed. and
only negative shares are truncated to zero, the
model is the classic tobit model (Tobin ).'"" If J
= 2, normality is assumed, and both negative
shares and shares greater than one are trun-
cated, the model is a double-truncated Tobit
model. Out-of-simplex truncation of the normal
has been extended to a system of three share
equations by Wales and Woodland who esti-
mated family budget shares for beef, lamb. and
other meats in meat consumption in Australia.
Wales and Woodland’s observed shares are
drawn from an out-of-vimplex truncated nor-
mal, where E{ § | are the shares resulting from
maximizing expected seasonal utility, E[U(x, a,
€)]. subject to the constraints B 2 p’x and Efg]
= 0. If § are interpreted as desired shares, this
model is consistent with constrained utility-
maximizing behavior in terms of the expected
desired shares, but provides no explanation for
why desired shares are normally distributed, or
why the observed shares and the discrete/con-
tinuous nature of their distribution is consistent
with constrained utility-maximizing behavior.
To provide a rationale for truncating shares
that are random variables, a distinction must be
made between observed shares and desired
shares. A distinction results if the individual’s
desired demands were obtained by maximizing
utility subject to some but not all of the con-
stramts. Ignoring some of the constraints leads
to desired shares that are impossible to achieve
if the ignored constraints are binding. In such
cases. the individual's observed shares will re-
sult from a truncation of the desired shares
where the truncation takes account of the addi-
tional constraints. An important consideration
is whether the truncation rule is consistent with
constrained utility-maximizing behavior.
Consider trying to explain out-of-simplex
truncation of the normal distribution, where the
s are the individual’s desired shares, and
where these desired shares are distributed mul-
tivariate normal with means equal to the shares
derived by maximizing expected seasonal util-
ity, EJU(x. a. &)]. subject to the constraints that
B > p’x and E[€| = 0. Normally distributed de-
sired shares imply that an individual will some-
times have desired shares that are negative or

¥ This model extended to a system ot goods by Amemtya
(1974
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greater than one. Since it is impossible to
choose shares that are negative or larger than
one, the individual adjusts by truncating nega-
tive shares to zero and proportionately adjust-
ing the other shares. This is not convincing. If
it is believed that desired shares are normally
distributed. negative shares obviously must be
truncated to zero, but assuming positive de-
sired shares are converted to observed shares
by proportionately expanding them is, at best,
an approximation. Nonetheless, it is difficult to
imagine that desired shares could be normally
distributed. If the individual is rational, desired
shares, like observed shares, must be restricted
to the unit simplex.

That desired shares must be restricted to the
unit simplex led us to consider a model where
desired shares have a Dirichlet distribution and
observed shares are obtained by truncating the
desired shares with a minimum-share rule. We
refer to this new model as the truncated-
Dirichlet share model."" We assume a two-stage
decision process: at the first stage, desired de-
mand is determined, and at the second stage,
desired behavior is truncated into observed be-
havior. Assume the desired shares, 5, have a
Dirichlet distribution with expected desired
shares obtained by maximizing E[U(x, a, €)],
subject to the constraints B > p’x and E[e] = 0.
At the second stage, the observed shares, s, arc
determined from the desired shares, s,, by the
following truncation rule:

(7 s,=0i1f §) < 8,0(J7) and
5, = “/S_ if 5, >s,,.(j) where
5
les
S={j: §/ > 5. (D]

Put simply, if §, falls below some minimum
level, s...(j), the individual chooses not to visit
site j. This truncation rule is referred to as
minimum-share truncation.

Minimum-share truncation of the Dirichlet is
indefensible within a pure framework of con-
stratned utility-maximizing bechavior. It is at
best a “‘rule of thumb™ that approximates the
individual’s decision process. However, we find
it a more plausible model than the truncated-
normal model. Like the truncated-normal
model, the truncated-Dirichlet model restricts

"' For an empirical apphication to tecreational sttes in the
Adirondaks, sce Morey, Waldman, Assane, and Shaw
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the shares to the unit simplex and admits the
possibility of data sets with significant number
of observed boundaries. Unlike the truncated-
normal model, it also appropriately restricts the
desired shares to the unit simplex. As a result
of the minimum-share truncation rule that maps
desired shares into observed shares, the likeli-
hood function necessarily involves the evalua-
tion of some line and surface integrals of the
Dirichlet function. in addition to evaluation of
the usual probability density functions.

While we have estimated a truncated
Dirichlet share model (Morey, Waldman,
Assane, and Shaw), we do not advocate this
model or refinements to it. Minimum share
truncation of the Dirichlet is preferable on
theoretical grounds to the out-of-simplex trun-
cation of the normal, but minimum-share trun-
cation of the Dirichlet is not completely consis-
tent with constrained utility-maximizing behav-
ior, and the model is significantly more difficult
to estimate than either the repeated nested-logit
model or the multinomial share model. Diffi-
culty of estimation is on par with the next
model—a Kuhn-Tucker model-—which is con-
sistent with constrained utility-maximizing be-
havior.

The Kuhn-Tucker (K-T) model of interior
and boundary solutions (Wales and Woodland;
Lee and Pitt; Bockstael, Hanemann, and
Strand) explicitly specifies the distribution
function for € in the random-utility function,
U(x, a, €). This direct specification of the dis-
tribution of €& differentiates the K-T model
from the out-of-simplex truncation and mini-
mum-share truncation models. Those models
explicitly specify a probability rule for the
shares. but do not consider the dual restrictions
on the random components in the utility func-
tion. In contrast, in the K-T model, after speci-
fying an explicit distribution function for g,
f(g). the conditions for the maximization of
U(x, a, €) subject to B > p’x and x > 0 are de-
rived."”> The K-T conditions and f(&) implicitly
define the probability rule for the shares. These
probabilities are functions of the unknown pa-
rameters in U(x, a, €) and. for boundaries. are

" In dual space. Lee and Pitt tirst speeity an indirect random
utihily tunction, Vip B. a, €) = max, {U(x, a, &) B = p'x}, which
1gnotes the nonnegatnivity constraints on demand Desired demands
(shates) are deuved from V(p, B, a. €) using Roy’s Idenuty Some
ot the desited demand will be negative Negative demands are
truncated (o zero Observed shaies for the consumed goods are oh-
tamed from the tunctions for the desired shares, evaluated at the
market prices for the consumed goods and at the prices tor the
nonconsumed goods that would just make the demands tor those
nonconsumed goods zero
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multiple integrals of the density of the transfor-
mation from € to s.

The parameters in U(x, a, €) are estimated by
maximizing the likelihood function L =
I1 %, prob(s,, s, ... s,), where s, is individual
i’s observed share for alternative j. The shares
resulting from the K-T model are mixed ran-
dom variables on the unit simplex, and their
implicit probability rule admits mass on the
boundaries of that simplex. These properties
make it an attractive model when the data set
includes a significant number of observed
boundaries. Its theoretical advantage over the
other two truncation models is that its transfor-
mation of desired shares into observed shares is
consistent with constrained utility-maximizing
behavior."?

Consider the basic problem of maximizing
U(x, a, €), equation (1), subject to the budget
constraint p'x < B and the nonnegativity con-
straints v, 2 0V j The K-T conditions are

AU(x,a,€)
f - ix IS Kp, =0 and
ox,

8) x,>0i

. dU(x.a,€)
x, =0if -—:— - —Ap, <0

J

where A is the Lagrangian multiplier. These
Kuhn-Tucker conditions are well behaved,
whereas the demand functions are discontinu-
ous at zero. It is therefore easier to work with
the Kuhn- Tucker conditions directly, although
the intent is still to derive each individual’s
probability rule for the observed shares,
prob(s,, s, ..., s,.

To derive these probability rules, define the
variable 1, = [0U(x, a, &)/dx,] — Ap,j =1, ...,
J, where n ={n,. m,,.... N,]. The elements of
M are deterministic from the individual’s per-
spective but are random variables from the
analyst’s perspective. If 1, = 0. alternative j is
chosen one or more times during the season.
and if n, < 0, alternative j is never chosen. The

""If prices are constant, Ransom (pp 355-59} has shown that
there 15 little difference between the K-T model and the simulta-
neous equatrons model with Iimited dependent variables of
Amemiya M prices are different, then the Amemiya maodel has
heteroskedastic errors The primary differences he 1n the param-
eterization (that 15, 1n what 1s estimated), and the way tn which
randomness 1s incorporated into the model The K-T model begins
with utility tunctions thit are rardom across individuals and de-
rives the resulting demar d tunctions, constrained by the budget so
that cero consumption muiy result In the Amemiya model. demand
tuncuons are assumed and (truncated) random errois are added o
them
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density function form, g(n,, N,. ..., N,), is de-
termined from the f(g) by a change of variables
that is a function of U(x. a, €). The density
function g(1,, N,. ..., N,) is then used to derive
the probability rule prob(s,. s.. ..., s,). To sim-
plify the notation, the M alternatives (sites) the
individual never chooses are listed first, in
which case

(9) probfx, =0,j=1,...,M and
=X >0 j=M+1, .., J]

!

=prob|n, <0,j=1,.... M and
nl:(),j:M-{— 1, ,.]]

0 {

)
= J'...jgm,,nz. M O, el 0)

s dmydn,...dn, = probls,=0,j=1....,M and
>0 =M+ 1, ..., J].

s, =5,
Note that the dimensionality of the integration
is not the number of alternatives in the choice
set, but rather the number of alternatives that
the individual never chooses. Since in a model
of participation and site choice. individuals al-
ways spend some of the season at home, 5, > 0
and the number of alternatives not chosen is the
number of sites not visited. In general, the inte-
gral, equation (9). will not have a closed-form
solution. Two special cases where equation (9)
has a closed-form solution are the repeated
nested logit model and the multinomial share
model. Equation (9) is significantly simplified
if we assume that U(x, a, €) = Ulu(x,, a,, €).
u,(x,, @y, €,), ... u,x,. a5, €,)]. An even stronger
separability assumption is made in the repeated
nested-logit model of participation and site
choice." An additional assumption of the re-
peated logit model of participation and site
choice is that the g, are all statistically indepen-
dent. A common starting point for K-T models
is to assume € is a multivariate normally dis-
tributed with unconstrained covariance matrix,
an assumption that will guarantee that equation
(9) does not have a closed-form solution.

How many alternatives can be included in a
general K-T model of participation and site
choice will depend on the specifics of the
model, the specifics of the data set, and the pa-
tience of the analyst. FEstimation of a K-T
model with € multivariate normally distributed

Hulveaag) = B0y a0+ (v, 8 ) + +
4, (1, a,. €,). where 1 indexes the choice occasions
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and a fairly general utility function is possible
if the number of sites not visited does not ex-
ceed four or five for most individuals. In these
cases, the analyst should give serious consider-
ation to estimating a general K-T model speci-
fication, for it allows an unconstrained specifi-
cation of the covariance of errors, and hence no
unnatural economic constraints. The only em-
pirical application of a general K-T model s
Wales and Woodland."” They assumed that € is
multivariate normally distributed and U(x, a, €)
quadratic. The quadratic specification implies
that the marginal utility for commodity j has
only € as an additive random component.

Current estimation of such a general K-T
model with enough sites so that many individu-
als in the sample fail to visit as many as ten
sites would require more patience, and com-
puter time, than most of us possess. Currently.
accurate and speedy numerical integration over
ten dimensions is nonexistent. One of the most
exciting, but not yet proven, potential solutions
is to circumvent the numerical integration prob-
lem completely by using instead Monte Carlo
methods to calculate the probability associated
with a boundary solution.!® This research has
focused on the high-dimensional multinomial
probit model. but we know of no substantive
examples to date.

Suggestions for Choice of Estimator and
Directions for Future Research

It a data set does not include boundary solu-
tions, the best models to use would be the
Dirichlet model or the truncated/uniformiy-
added normal model; both models appropriately
restrict the shares to the unit simplex. If the
data set includes only a small proportion of
boundary solutions (less than 10%), a good
choice would be to assume the shares have a
truncated/uniformly-added distribution because
this distribution admits density on the bound-
aries of the simplex. However, all multiple-site
recreation demand data sets contain a signifi-
cant number of boundary solutions. For ex-
ample, all of the observations in Hanemann’s
Boston beach data are boundaries; the same is
true in Morey’s skiing data [Morey (1981)]. and

"" Lee and Pitt (1986) specity a translog tunctional form for the
indirect utility function that contams a normally distisbuted €, and
from this random-utility functeon they derive probability tunctions
tor vectors of observed shares, but they do not estimate o mode]

® See the pathbreaking theorctical work n the method ot simu-
lated moments by Mckadden and Pakes and Pollard

Amer. J. Agr. Econ

the Atlantic salmon fishing data set (Morey,
Rowe, and Watson). Few individuals visit all
sites. If there are extreme corner solutions (i.e.,
individual who visits only one of the sites) but
no interior solutions or other types of bound-
aries. we recommend the extreme corner model
of Hanemann.

If the sample contains a significant number of
boundary solutions, we recommend for both
participation and site choice a repeated nested-
logit model, a multinomial share model, or a
more general K-T model. The critical issue for
estimation is the number of sites unvisited for
each individual in the sample. If this number is
less than five for most individuals in the
sample. the K-T model is tractable and should
be used because 1t imposes the fewest a priort
restrictions on preferences.

It the number of sites not visited is more than
five for many individuals, we recommend
against the K-T model until computers become
sutficiently fast, or the method of simulated
moments becomes operational. Until then. we
suggest a repeated nested-logit model of par-
ticipation and site choice or a multinomial
share model of participation and site choice.
Both models are consistent with constrained
utility-maximizing behavior and can be esti-
mated with data that include individuals who
visit a small number of the sites. Both models
are restrictive in that they require that trips to
site k be negatively correlated with trips to site
i, for all k and i. and that the number of trips be
integers. While the repeated nested-logit model
is better understood than the multinomial share
model. the repeated nested-logit model, unlike
the multinomial share model, restrictively as-
sumes independence across choice occastions.

In summary, an ideal model for data with sig-
nificant numbers of observed boundaries that
is both tractable and consistent with con-
strained utility-maximizing behavior does not
currently exist. Shares must be restricted to the
unit simplex. In addition, shares must either be
discrete random variables. or mixed random
variables, and admit positive probability along
the boundary of the unit simplex. Boundaries
are inconsistent with shares that are continu-
ously distributed random variables. A critical
modeling decision is whether to assume shares
are discrete random variables (the repeated
nested-logit model and the multinomial share
model) or mixed random variables (the general
K-T model).

[Received May 1992;
final revision received August 1994.]
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