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A model of constrained utility maximizing behavior is developed to explain how a
representative individual allocates his ski days among alternative sites. The physical character-
istics of the ski areas and the individual’s skiing ability are explicit arguments in the utility
function; the budget allocation is given along with the parametric costs to ski (including travel
costs, entrance fees, equipment costs, and the opportunity cost of his time). Shares (a site’s
share being the proportion of ski days that theindividual spends at that site) are derived and
assumed multinomially distributed, a stochastic specification which maintains the inherent
properties of the shares. Maximum likelihood estimation confirms the basic hypothesis that
costs, ability, and characteristics all are important determinants of the sites’ shares. The model
explains a large proportion of the skier’s allocation of ski days. A multinomial logit model of
skier behavior is also developed and maximum likelihood estimates of its parameters are
obtained. Examination of the summary statistics from my model and the logit model indicates
that my model predicts the skier’s choice of sites better than the logit model.

1. INTRODYSFION

The purpose of this research is to model and estimate a representative individual’s
share functions for site-specific skiing activities. The model assumes utility-
maximizing behavior: Faced with a limited skiing budget, the individual attempts to
allocate his time among competing areas so as to-maximize the utility he derives
from skiing. This utility is hypothesized to be a function of: (1) the amount the
individual skis at each of the available sites; (2) certain physical characteristics of
those sites; and (3) his skiing ability, i.e., whether he is a novice, an intermediate, or
advanced skier. The cost of skiing at a specific site is hypothesized to be the sum of:
(1) the price of the lift ticket; (2) the cost of equipment rental; (3) vehicle
transportation costs; and (4) the opportunity cost of the individual’s time, both while
traveling and skiing. A system of stochastic share equations is derived from this
model, a site’s share being the proportion of ski days that the individual decides to
spend at that particular site. Maximum likelihood estimates are obtained by apply-
ing the model to a cross-sectional sample of Colorado skiers.

"This paper has been evolving gradually. In part, it is based on my Ph.D. dissertation (University of
British Columbia, 1978) and Discussion Paper 03 /78, The Norwegian School of Economics and Business
Administration (presented at the 1978 Econometric Society meetings in Geneva). After the model was
substantially expanded it was revised and appeared as Resources Paper No. 33 in the University of British
Columbia’s Programme in Natural Resource Economics. The Programme’s funding by the Social Sciences
and Humanities Research Council of Canada is gratefully acknowledged. Computer funding provided by
the Economics Department at U.B.C. is 4lso gratefully acknowledged. Since then the paper has been
substantially expanded into its present form. I am most indebted to my dissertation supervisor, J. G.
Cragg, and other committee members, H. F. Campbell, A. D. Woodland, and T. G. Wales. Thanks for
helpful suggestions and constructive comments must also go to G. C. Archibald, W. E. Diewert, J.
Mossin, and A. Sandmo.
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This model of skier behavior developed here builds on and expands on the models
of recreational demand developed by Burt and Brewer [4], and Cicchetti et al. [7].
The Burt and Brewer [4] model, and the Cicchetti er al. [7] model both made
significant contributions to the art of recreational demand estimation but the
demand equations in these models are not derived explicitly from a well-specified
model of consumer behavior. This has led to two problems: (1) the functional forms
of the estimated demand equations are often theoretically implausible, or if plausi-
ble, they impose questionable restrictions on the individual’s preferences; and (2) the
costs of producing recreational activities are often incorrectly defined, since the
production functions for those activities are not adequately specified. This paper
makes a moderate attempt to reduce the magnitude of these deficiencies.

Few demand studies for recreational sites explicitly consider the sites’ physical
characteristics. Even those studies which consider site characteristics do not ex-
plicitly incorporate them into the utility function (see, for example, Burt and Brewer
{4] or Grimes [16]). I include physical characteristics of the sites (i.e., amounts and
types of terrain, lift capacities, and average annual snowfall) directly into the utility
function because, a priori, it seems very reasonable that an individual’s choice
among ski areas is influenced by them. I have also hypothesized that an individual’s
preferences over sites depend on his skiing ability, in that it can remove certain ski
runs from his feasible choice set. For example, a beginner cannot take advantage of
the expert runs at a site, consequently one would not expect the acres of expert runs
to play an important explanatory role in how that individual chooses among sites.
The method used to incorporate the characteristics of areas and of individuals
appears to be original.

The shares were assumed multinomially distributed, a stochastic specification
consistent with the inherent properties of the shares. This error specification for the
shares also appears to be new. In the Appendix my model is compared with a
multinomial logit model, where I argue that mine is a preferable approach to the
skier’s choice problem.

Prices and characteristics were found to be significant explanatory variables. The
estimated share equations were found to be consistent with the underlying theory,
and a large proportion of the variation in the data was explained by the model.
Elasticities estimating the effect of changes in prices and characteristics on a site’s
share were derived. Policy implications of these elasticities are briefly discussed.

2. A MODEL OF SKIER BEHAVIOR

The purpose of this section is to develop a model which describes how a
representative individual allocates a fixed skiing budget among competing ski areas.
First (Section 2.A) the complete model is presented. Then I backtrack and consider
the utility function (Section 2.B) and the cost functions and resulting shadow prices
for the skiing activities (Section 2.C).

2.A. The Representative Skier

A model is required which describes how the representative individual allocates a
predetermined skiing budget among alternative sites.” The allocation is hypothesized

2The behavior of the representative individual is defined as the expected behavior of an individual
randomly drawn from the population.
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to depend in part on the parametric costs of skiing at different sites. The skier
allocates his budget among sites so as to maximize the utility he receives from skiing
given these costs. The utility produced by skiing activities is assumed weakly
separable from the utility produced by other activities.> Therefore, the allocation of
the skiing budget is independent of total income, prices and characteristics of
nonskiing activities, and the preference ordering for those activities (Phlips {20, pp.
72-77)).

The model must explain what determines the utility an individual derives from
skiing activities, i.e., what determines why he prefers some sites over others. This is
hypothesized to depend in part on the amount and types of terrain at the different
sites. Ski terrain is designed for specific ability levels, thus one’s ability to enjoy an
area depends on one’s skiing ability in conjunction with the amounts of novice,
intermediate, and advanced terrain at the site. The lift capacities and snowfalls at the
sites are also hypothesized to affect utility. It is further assumed that the individual
desires variety in his skiing activities, i.e., that the marginal utility from skiing at a
site diminishes with increasing visits.

The model of skier behavior is based on three postulates.

PosTULATE 1. Skiing is an activity. The skier combines skiing equipment, the
services of a ski area, transportation services, and some of his own time to produce a
site-specific skiing activity.

PoOSTULATE 2. The arguments in the utility function are the amount the individ-
ual skis at each of the available sites and the effective physical characteristics of
those sites. Each site, from the point of view of the individual, can be described in
terms of five effective physical characteristics (EPCs). The adjectives “effective
physical” refer to the fact that the EPCs depend on the physical characteristics of
the site and the personal characteristics of the individual. The personal characteris-
tics often determine which of the physical characteristics can be effectively utilized.
The first EPC is the acres of ski terrain at the site which the individual is capable of
skiing. The second is the acres specifically designed for the individual’s skiing ability.
It is assumed that the individual distinguishes between the different types of terrain
he is capable of skiing. These first two EPCs depend on the individual’s skiing
ability (novice, intermediate, or advanced), and the acres of novice, intermediate,
and advanced terrain at the site. The VTF (Vertical Transport Feet) at the site (the
number of people that can be transported 1000 vertical feet by the lift system in one
hour) is the third EPC. The fourth is the site’s average annual snowfall. I expect
these first four to be the important EPCs of the sites.* The fifth EPC is an index of
other physical characteristics of the site that can be effectively utilized by the
individual. The individual observes all five EPCs, but we are unable to observe and
measure the fifth one. The value of each site’s fifth EPC varies across individuals
and its expected value is assumed zero.

3A function is weakly separable across groups if the marginal rate of substitution between any two
variables belonging to the same group is independent of the value of any variable in any other group
(Phlips [20, p. 63)).

4One might think of others, but I feel that these four are the most important. The empirical model
considers the behavior of a group for whom these four EPCs largely describe the sites. For example, all
the people sampled were single and mostly took one-day trips. Characteristics of e.g., child-care facilities,
lodges, and nightlife are therefore not important. For more details see Footnote 14.
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PoSTULATE 3. The quantity of skiing activity j and site j’s EPCs are assumed
strongly separable from the amount consumed of any other skiing activity, and its
EPCs.> This assumption is proposed as a reasonable working hypothesis, I do not
expect it to hold strictly. The assumption reduces the number of parameters to be
estimated in any model consistent with Postulates 1 and 2. This proves to be of
critical importance in my empirical work. The assumption also makes it possible to
ascertain the effects of introducing a new area into the skier’s choice set without
having to reestimate the model. Strong separability is only tenable if the skier views
each of the areas as a distinct and independent alternative. Differential substitutabil-
ity and complementarity amongst areas is not allowed. It is sometimes possible for a
skier to ski at more than one site on a given trip.” In such a situation the skier will
tend to lump these sites together and consider a visit to this group as one possible
alternative; it is therefore unreasonable to view such sites as distinct and indepen-
dent. To maintain consistency with Postulate 3, one must do what the skier does, the
complementary sites must be aggregated and then treated as a distinct alternative.
This was done in the empirical model.

The rational skier solves the following problem:®

Maximize U = U(Y, 4), (2.1)
w.r.t.
s.t.r=TIY, (2.2)

where

Y = [y;], where y; = the amount of skiing activity j produced and demanded by
the individual per season, where one unit of ¥; is one day of skiing at site j.

I' = [v,] = the cost (measured in units of time) of skiing activity j. y; is the hours
required to produce one day of skiing at site j. It includes skiing time,
transportation time, and the time required to earn the money that is needed
to purchase (or rent) the skiing equipment and the lift ticket.

7 = the individual’s total time allotment to skiing activities.

A = [a, ], where a; ; = the amount of EPC k that the individual can utilize at site
J. Specifically: a,; = the acres of ski runs at site j which the individual is
capable of skiing. For example, the intermediate skier is limited to the novice
and intermediate terrain. Skiers are assumed incapable of skiing terrain
which has a difficulty rating in excess of their ability level. a, ,; = the acres of

%A function is strongly separable across groups if the marginal rate of substitution between two
variables belonging to different groups is independent of the quantity of any variables in another group
(Phlips (20, p. 69]).

SStrong separability is a maintained hypothesis in many empirical demand studies. Empirical
multiple-choice logit models—a possible alternative way of modeling the skier’s choice on the basis of
prices and characteristics—also universally maintain this hypothesis. A logit model of skier behavior is
considered in the Appendix.

?This possibility is limited in my model because I only consider one-day trips.

8This model is more general than the Lancaster model [18]. The Lancaster model assumes that the
utility one receives from a characteristic is independent of which activity produced it. It assumes
constant returns to scale in the production of characteristics, diminishing marginal utility associated with
visiting a specific site is disallowed by assumption. Such restrictions are not imposed on (2.1).
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ski runs at site j specifically designed for the individual’s skiing ability. For
example, a,;, for an intermediate skier would be the acres of intermediate
terrain.

a;; = the vertical transport feet (VTF) at site j.

a,; = the average annual snowfall at site j (measured in inches).

as; = the amount of EPC five (the index) at site ;.

E(as;) = 0. One could also define a¢; = a;; — a,,, which is the acres of terrain at
site j on which the individual can ski but that are not designed for the
individual’s skiing ability. a,; adds no new information but later it will be
useful in expressing some elasticities.

A specific form of the utility function was chosen so as to be simple and

consistent with Postulates 1, 2, and 3.°

J
v= 3 yjﬂh(a,j,azj,a3j,a4j,a5j), (2.3)
j=1

where
— 1,2
h(ay;, ayj, ayj, Ay, As;) = @y + aay; + ay(ay;a,;) " + Qa3d;; +a4a}j/.2

1,2 1/2
+ ozsa%2 + agay; + a;(ay;a,,) 24 ag(ay;a,;)

+a9a;j/.2 + aa,; + "‘11(“1]“4,’)1/2 + 0‘12(“2,“14;)]/2
+a12(a2ja4j)l/2 + 0‘13(“3,"14,')‘/2 + al4a‘11§2 + asas;
+a]6(alja5j)l/2 + a16(a2jaSj)1/2 + al?(aBja_.‘)j)]/z
-f-otm(a“jasj)l/2 + awagj/.z. (2.4)
The parameters in (2.3) are ay, @), @5, ..., a4, and B. The following system of share
equations are obtained by maximizing the utility function (2.3) subject to the budget

constraint (2.2). These shares, which express the proportion of ski days to a given
site, are:'”

J e
— T veh(ay;, ay;,a,;, a,;, as;
sf_}{l*/ _1/2 : ( L2 3 4 51) ’ j—la...,-"
k=1 th(alk’ Qg a3ka a4k’ aSk)

(2.5)

o - | ( 1-5%
The utility function for the representativé individual is the expected value of (2.3) and (2.4). Keep in
mind that E(as;) = 0. It is possible to rewrite (2.3) and (2.4) in the form:

U=U(Y,4)

=V(Y.ay,a;,a3,a3) +€(Y,ay,a;,a3,a,,as),

where T* =3/_,y¥ and —o = 1/73 = 1.

where V(Y ay, a;, as, a4) reflects the tastes of the representative individual in the population; it is
nonstochastic, and ¢(Y, a,, a;, a3, a4, as) reflects the variations in the utility the individuals receive from
the different sites due to the fact that a4 varies across individuals and sites.

E[e(Y.a),ay,a;5,a,4,a5)] =0.

OThe system of demand equations ( y* =12,...,J) corresponding to the preference ordering (2.3)
is reported by Pollak [21, p. 403]. The share equations are derived by dividing ¥ by the sum of the y}.
Many of the terms, including the skiing budget, 7, cancel.
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All the share functions (2.5) are identical. The only thing that varies from one
site’s share function to another is the value of the exogenous variables
(vj» ayj> azjs-- - as;). If two sites (j and k) are identical, that is, if v, =y, and
a;;=ay,=12,...,5 then s} will equal sf. Share functions are generaily not
identical because not all factors (i.e., characteristics) that explain variations in the
demand for activities are included as exogenous variables. Therefore, variations in
demand across activities have to be, at least partially, accounted for by variations in
the form of the share equations. In the case of skiing there are only six reasons why
the demand for one skiing activity might differ from the demand for another: their
prices differ, or they possess different quantities of EPCs. Since all are explicitly
included as arguments in the share function, all the functions are identical. An
activity’s name (site name) is not necessary to explain the demand for that activity.
This is the advantage gained when one explicitly includes the EPCs of activities as
arguments in the utility function. One can account for differences in the demand for
activities by variations in the values of the independent variables (the prices and the
EPCs) in the share function, rather than having the variations appear in the form of
differing share functions, each specific to only one name specific activity.

2.B. The Specific Form of the Utility Function

The utility function (2.3) belongs to the Bergson family of utility functions, that is,
utility functions which are both directly additive and homothetic (see Samuelson [25,
pp. 787-788] and Pollak [25, pp. 787-788])."' Homothetic preferences mean that the
sites’ share are insensitive to changes in the skiing budget (7). This restrictive
assumption was made for practical reasons. The indifference maps corresponding to
the preference ordering (2.3) are identical to the isoquant maps of the CES
production function (see Chipman [5, pp. 485] and [6, pp. 57-70]), and the Allen [1]
elasticity of substitution between any two skiing activities is constant and equal to:

o, =0=—1/(B=1), j#k, j,k=1,..,J(Uzawa[28]). (2.6)

o= | / ( l-ﬁ)

The constant terms (k;, j =1,..., J) in the Bergson function (U = Ef=,h ! yf)
were disaggregated and each made an identical function of the EPCs of site j
(h; = h(a,j, ..., as;)). This technique for incorporating the EPCs into the direct
utility function is similar to the method used by Pollak and Wales [22] to incorporate
demographic characteristics of the household directly into the household’s utility
function. Pollak and Wales assumed that a subset of the parameters in the indirect
function was a function of demographic variables which depend only on the
individual, whereas mine depend on both the sites and the individual. Incorporating
both characteristics of the individual and characteristics of the areas into a conven-
tional utility function using this method appears to be new. The specific form for
h(a,;,..., as;), defined by (2.4), was chosen because it is a second order approxima-
tion to any twice differentiable function in the a, ;’s.

YA function is homothetic in the y;’s if it can be written: U= G[g(»,..., )] (Phlips [20,
pp. 36-87)), where G is a finite, continuous and strictty monotonically increasing function of one variable
with G(0) = 0, and where g is a homogeneous function of the J variables, y,,..., y;.
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2.C The Cost Functions for the Skiing Activities

The budget constraint is described by (2.2), where the prices of the J skiing
activities are assumed parametric to the individual. Four nonsubstitutable inputs are
required to produce a one-day ski trip to site j: (1) one day’s use of ski area 7 @)
skiing equipment (skis, boots, etc.); (3) transportation services to and from site j;
and (4) the time required to ski, and to travel to and from the site. The fact that
these inputs do not substitute for one another suggests that a Leontief process will
closely approximate the “true” production function for a skiing activity. Thus it is
assumed that the price (marginal cost measured in units of time) of skiing activity j
is parametric to the individual and equals:

lift ticket ski per mile
priceat | + | equipment | + b; | transporta-
site j rental fee tion costs
= J +¢,  (27)
w
where
b; = the minimum number of miles the individual must travel to produce one unit
of skiing at site j, i.e., twice the distance from the individual’s residence to
site j.
w = the opportunity cost (measured in $) of the individual’s time.
¢; = the minimum amount of time required by the individual to ski and to travel

to and from site j.

3. THE STOCHASTIC ASPECTS OF THE MODEL

One would like to determine the value of the vector of parameters, 8, =
g, &y, ..., 09, —0] In the system of share equations derived in the last section.
0s &) 19 q

sJ‘.“=s*(yj,au,azj,a3j,a4j,a5j;F;A;G), j=1..,J. (3.1)

The model could then be used to determine the proportion of ski days that the
individual will spend at site j—the shares. If, given a sample of individuals, one
could observe the values of all the independent and dependent variables, then one
could deterministically solve the system of equations to obtain the values of the
parameters. Unfortunately, the problem is not so simple because the value of the
fifth EPC, at each site and for each individual, is not observed. The observed shares,
as a function of the observed costs (I') and observed EPCs (a,, a,, a,, a,), are
therefore stochastically distributed. One can then only obtain statistical estimates of
[ag, @,..., a3, @4, —0]. The parameters relating to the fifth EPC (ays,..., a)9)
cannot be estimated. The distribution of the shares in the sample depend on the
distribution of as. I have assumed for simplicity that E(as ;) = 0. There is not
enough information to completely specify a4’s density function explicitly aprior.
The individual solved his utility maximization problem implicitly assuming that
ski trips are completely divisible, but they are not. Ski trips must be consumed in
one-day increments. The individual must adjust his desired trip vector to take
account of the lumpy nature of the choice problem. This adjustment process is
unknown but will most likely vary among individuals. These variations in the
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adjustment process will add a second stochastic component to the observed share
equations.

Estimation of the parameters [ay, a;, ..., a4, —0] requires that we specify the
density function for the stochastic component of the shares. This density function
depends on the distribution of a4 across individuals and on the different ways the
individuals adjust to the lumpy nature of the choice problem. Its specific form is
unknown so we are required to approximate it on the basis of its necessary
properties. Our definition of the share, s; = y;/T, requires that it can take only one
of (T + 1) discrete values in the 0-1 range where py i=18; = 1. This follows because
ski trips can only be consumed in integer (day) 1ncrements and because T = 2’-_ 1
Each share is also perfectly correlated with the other J — 1 site-specific shares Our
prior assumption that E(as;) = 0 implies that E(s;) = s}.

A standard assumption in econometric work is that the random variable is
normally distributed. Unfortunately this approximation is inconsistent with the
properties of the s;’s. The normality assumption requires that the random variable
be continuously distributed from — oo to + oo, where there is a positive probability
that shares will be outside the 0-1 range. This is inconsistent with the requirement
that each s, is discretely distributed between zero and one. The normal distribution
also assumes that the shares are symmetrically distributed. This seems unlikely for
shares with expected values near zero or one.!? Even when the population is not
normally distributed, the normal distribution can often be justified as the ap-
propriate density function by an appeal to the Central Limit Theorem. Unfor-
tunately, the average skier does not ski enough times in a season to invoke this
justification for the use of the normal density function.'* The standard normality
assumption must thus be rejected.

It is assumed that the individual’s density function for SppJ = 1,...,J, is a
multinomial, where: !4

(512 83000053 T5 8) = (T'/ 194 ) ( (s )yf). (32)

This error specification for a system of share equations, where the shares are not
probabilities associated with choosing a site on a given trip, appears to be new. In
the Appendix I compare it with a multinomial logit model. There it is argued that
my model is preferable for the skiers’ choice problem. Wilks [29, p. 139], amongst
others, have shown that, if the s; are distributed as a multinomial, then:

J

j=1

E(s;) = s*, J=1,, (3.3)
var(s;) = (s})(1 = s?)/T, j=1,....J, (3.4)
cov(s;s;) = — (s#)(s2)/T,  j#kk=1,...,J. (3.5)

2iscussions with A. D. Woodland, who is also examining the inappropriateness of the normality
assumption with system of share equations [30], helped to clarify some of my thoughts on these matters.

3The average individual in my sample took only nine ski trips during the season.

141 am not assuming that s} is the probability that site j will be chosen on a given trip, and I am not
assuming that each trip, for a given individual, is independent. This is contrary to the normal
interpretation of the variables in the multinomial distribution, but this does not preclude me from
utilizing the mathematical properties of the function given that I fulfill the requirements that

J . J
1>s*>0, Ysr=1, ad =T
J=1 j=
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The distribution of the s, will be skewed, except in the case where st = 1/JVj. The
variance of s, falls toward zero as s} approaches either its upper hrmt of one, or its
lower limit of zero. As the number of trips increases, the variances and covariances
of the s; decrease. The covariance matrix satisfies the condition that 37 =1coV(s;5;)
= 0, where the signs on all the covariances (j # k) are required to be negative.

The multinomial was chosen as an appropriate density function for the individual’s
shares because it is simple, and because it is consistent with all the aforementioned
properties of the density function of s;. The multinomial places the following
required restrictions on the random vanable s;: (1) the expected value of s;is %5 (2)
s; is limited to (T + 1) discrete values, all of wh1ch are in the 0—1 range; and (3) the
s are correlated across sites in such a way that 3/_;s, = 1.

If it is assumed that the choice of shares by one individual is completely
independent of any other individual’s choice, then the likelihood function for a
sample of N skiers is:

N
L= ‘l:[lf(s“,sz,-,...,sji;T,-; g). (3.6)

The i subscript refers to the ith individual, where i = 1,..., N. The maximum
likelihood estimate of the parameters for a particular sample is the § which globally
maximizes the likelihood function (3.6). Rao [24, pp. 295-296] has shown that if
certain regularity conditions are fulfilled, the maximum likelihood estimates of the
parameters in (3.1) will be consistent and asymptotically efficient when s; is
multinomially distributed. Equation (3.1) will fulfill these regularity condltlons for
most populations.

4. DATA

Estimation of the share equations for J site-specific skiing activities requires four
types of data: (1) a cross-sectional survey of skiers which details their skiing
activities for an entire season at the J sites; (2) data on the acres of novice,
intermediate, and advanced terrain at each of the sites; (3) data on vertical transport
feet and snowfall at each of the sites; and (4) price data (lift ticket prices,
transportation costs, €tc.).

4.A. A Cross-Sectional Survey of Skiers

The best available skier survey is one done in 1968 by the Denver Research
Institute (DRI). This survey was part of an extensive analysis of the Colorado tourist
market (DRI [10]). The following data were collected for each individual sampled:
(1) a complete record of each individual’s skiing activities during the 1967,/1968
season; (2) the individual’s skiing ability; (3) information on the individual’s family
and their skiing habits; (4) the individual’s occupation and approximate earning
ability; and (5) the location of the individual’s residence. It should be noted that the
question ascertaining skiing ability did not classify a skier’s ability as necessarily
equivalent to the type of terrain he most enjoyed, but rather equivalent to the type of
terrain he is capable of navigating,
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TABLE I
Allocation of Student Ski Days by Ability Level

Total Novice Intermediate Advanced

Aspen 297 9 10t 187
Vail 241 13 70 158
A-Basin 167 4 65 98
Breckenridge 96 15 38 43
Loveland 137 16 73 43
Winter Park 221 20 81 120
Broadmoor 7 1 5 1
Crested Butte 36 0 26 10
Lake Eldora 89 6 40 43
Monarch 43 4 15 24
Mt. Werner 69 0 43 26
Wolf Creek 10 0 4 6
Purgatory 20 0 4 16
Cooper 10 6 3 |
Hidden Valley 10 1 4 6
Total 1453 95 572 787
Average no. of ski .

days per season 8.9 6.79 7.94 . 10.22

My estimation of the share equations will be based on a subsample of the skiers
questioned by DRI. This subsample will be restricted to include only single
post-secondary Colorado students, who do not belong to a ski club and whose
family does not own a dwelling at a ski area. There are 163 individuals in this group.
Each of the skiers in the sample attends school (resides) in one of the following
eleven Colorado cities: Denver, Boulder, Ft. Collins, Greeley, Golden, the Air Force
Academy, Colorado Springs, Pueblo, Alamosa, Gunnison, and Durango. Their ski
trips were limited almost exclusively to the following 15 distinct ski areas: Aspen
(consisting of Aspen Highlands, Aspen Mountain, Buttermilk, and Snowmass), Vail,
Arapahoe-Basin, Breckenridge, Loveland, Winter Park, Broadmoor, Crested Butte,
Lake Eldora, Monarch, Mount Werner (Steamboat Springs), Wolf Creek, Purgatory,
Cooper, and Hidden Valley (Estes Park). Table I summarizes the skiers’ trips.'®

13There were a number of reasons for limiting my sample to this group. (1) The technology I specified
for producing skiing activities most accurately describes the production of one-day trips, and this is what
students predominantly take (DRI [10, p. 74]). (2) I have modelled the behavior of the individual, not the
family. Estimation is made simpler if one can assume that the individual’s choice of sites is independent
of any other individual’s choice. Single students tend to ski without other members of their families (DRI
[12, p. 6)). (3) The value of each individual’s time must be estimated so that the costs of visiting each of
the sites by each of the individuals can be determined. The DRI data include annual income data, but not
hourly wage rates. It is questionable whether income data alone are sufficient to construct reliable
estimates of the value of each individual’s time. The alternative to constructing such an opportunity cost
variable which varies across individuals, is to choose a subgroup of the population within which it is not
unreasonable to assume that every individual’s time has the same dollar value. The opportunity cost of
time should be relatively stable across single postsecondary Colorado students. It can hopefully be
approximated by using the 1968 hourly U.S. Federal minimum wage rate, which was $1.15 an hour (U.S.
Department of Commerce [27, p. 382]). (4) Other questions in the survey suggest that postsecondary
students, more so than other skiers, visit an area predominantly to ski. Students in my subsample ski
approximately six hours per day (DRI [10, p. 75]). (5) It was simple to calculate travel costs for these
students because they traveled almost exclusively by car (DRI {11]). (6) Many variables that possibly
influence the choice of sites but that are not explicitly included as independent variables in the share
equations, vary little within the student group.
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4.B. Lift Ticket Prices and Characteristics of the 15 Colorado Ski Areas

Estimation of the share equations for the 15 ski areas requires that we know their
lift ticket prices; the amounts of novice, intermediate and advanced terrain at each
during the 1967,/1968 season; vertical transport feet at each in 1967/1968; and
average annual snowfall (measured in inches). These data are listed in Table II.

4.C. Construction of Cost and Effective Physical Characteristic Data for the Ski Areas

The vector of shadow prices for the 15 ski areas was calculated for each
individual, where these shadow prices, Y;i» are defined by (2.7). Distances were
calculated using a Rand McNally road atlas [23]). The opportunity cost of the
students’ time was assumed to be $1.15 /hr. as per assumption in Footnote 14. The
student is assumed to ski six hours per day as per the information noted in Footnote
14. It was assumed that the average driving speed was 45 miles per hour. The
1967/1968 Lft ticket prices are included in Table II. The rental fee for skiing
equipment averaged $3.50 per day during the 1967 /1968 season (Colorado Visitors
Bureau [9]). In the previous section it was noted that the ski trips were made almost
exclusively by automobile. The per mile variable cost of operating an automobile in
1968 was $0.064 (U.S. Department of Commerce 26, p. 537]). In my sample there
were 3.8 members in each skiing party, so average per mile transportation costs for
each individual was $0.017 per mile. This combination of further assumptions and
additional information allows us to make individual i’s cost function for ski activity

TABLE 1I
Lift Ticket Prices and Ski Area Terrain, VTF, and Snowfall, 1967 /1968 Season
Acres
Acres inter- Acres
novice mediate advanced
Ski areas Prices terrain terrain terrain VTF Snowfall
Aspen 6.50 624 1559 722 19222 233
Vail 7.00 1024 3072 1024 8849 301
A-Basin 475 100 160 140 2913 280
Breckenridge 5.00 70 140 140 4100 285
Loveland 5.00 122 220 73 4512 280
Winter Park 5.00 127 258 59 5130 250
Broadmoor 3.00 12 4 4 480 40
Crested Butte 5.00 98 24 35 1607 210
Lake Eldora 4.00 22 70 16 1484 150
Monarch 3.50 20 65 15 192 354
Mt. Werner 5.00 70 160 29 2914 325
Wolf Creek 3.00 10 20 17 384 435
Purgatory 4.50 25 25 50 1507 300
Cooper 2,75 86 108 22 856 250
Hidden Valley 3.50 10 16 50 1106 150

Sources: Lift Ticket Prices: Colorado Visitors Bureau [9]. Terrain Data: Data on the terrain
at all of the areas except Aspen Corporation areas, Hidden Valley, Loveland and Wolf Creek
was provided directly by the ski are a managements at my request. Estimates for the other areas
were constructed on the basis of data provided by Colorado Ski Country U.S.A., Denver,
Colorado. VTF: Colorado Ski Country U.S.A. (1974). Average annual snowfall: Colorado Ski
Country US.A. (1975).
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j more explicit.

lift ticket
price at + (83.50) + bj,-($0.017)

site j b,
Y= 115 +E+6' (4.1)

The effective physical characteristics, a,;; and a, ;;, were calculated for each site for
each individual using the data on terrain and skiing ability.

5. EMPIRICAL RESULTS AND THEIR INTERPRETATIONS

In this section the maximum likelihood estimates of the parameters are reported
and discussed. Hypothesis tests are performed to ascertain whether prices and
characteristics play a statistically significant role in the skier’s allocation of ski days
among sites. The estimated preference orderings are also examined to determine if
they are consistent with the underlying hypothesis of utility maximizing behavior.
Elasticity estimates are reported to provide insights into the allocational behavior
implied by the estimated model. Policy implications are also briefly discussed.

5.A. Maximum Likelihood Estimates and Hypothesis Testing
The DRI sample of student skiers was used to obtain estimates of the parameter

vector 0 = [0] = [ay, @), ..., a4, —0] in the model. Maximum likelihood estimates
were obtained by finding those values of # which maximize:

163 15
=23 3 ylog(sh), (5.1)
i=1 j=1
where
%= 5*(Yji @rjis- e @y Ty A2 0). (3.1)

Equation (3.1) is homogeneous of degree zero w.r.t. the a parameters so the
maximum likelihood estimates are not uniquely identified. To rectify this situation,
a, was set equal to one. (5.1) was then maximized using a modified Newton method
formulated by Fletcher [15] and supported by the U.B.C. Computer Center (Bird
and Moore [2, p. 2)).'¢

Maximum likelihood estimates of the parameters were calculated for six models.
These estimates along with the approximations to their corresponding asymptotic ¢
statistics are reported in Table III. The basic hypothesis of this research is that prices
and effective physical characteristics play an important role in the skier’s allocation.
The corresponding null hypothesis is that prices and characteristics play no role, i.e.,

'$The algorithm used calculated the derivatives of /* w.r.t. the parameters numerically rather than
analytically. The asymptotic ¢ statistics (reported in Table III) are therefore subject to approximation
error.
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TABLE I
Maximum Likelihood Estimates for Six Models
Model ¥ o L « a a .. & . —a ag
1 —4021.454
2 —4017.232 —0.2879
(—2.919)
3 —3563.518 0.0269 —0.3299 —0.3447
(39.80) (—86.11) (—26.31)
4 —3472.695 -0.1313 03713 —0.2815 3.210 —1.396 —2.128
(—2.905) (2.837) (—2.818) @.11D (2.781) (20.41)
5 —3443.358 —0.0155 0.0414 —0.0294 0.3982 —0.1393 —2.025 0.0005
(—1.792)  (1.719) (—1.665) (2070)  (—1.220) (=119 (1.535)
6 —3410.214 —0.6144 1445 —1.095 —3.164 —-10.70 —1.984 —0.0165
(—2.681) (2.105) (—2.130) (—2.840) (—10.08) (—10.61) (—~1.627)
ay ag o9 oy ap o a5 a4
5 0.0015 —0.0033  0.0082
(0.9756) (—1.584) (0.4605)
6 0.0945 —0.1058 21.95 2.464 1.137 0.5934 —1.124 —48.209
(2.388) (—2.110) (25.58) (39.19) (3977 (2.104) (—19.70)0 (—188.7)

the individual randomly allocates his ski days amongst sites, such that:

s;*=1/J=1/15 Viand,. (2

Equation (5.2) is a nested hypothesis of the model (3.1). If it is assumed that
a-a;, = —o = 0, then (3.1) reduces to (5.2). The log of the likelihood function, /*,
for this restricted case of the model (model 1—the null hypothesis) is —4021.454.
The model is first made less restrictive by allowing prices, but not characteristics, to
play an explanatory role in the skier’s allocation amongst sites (model 2). This can
be accomplished by determining the maximum likelihood estimate of —a, given the
restriction that a; — a;, = 0. The model is then generalized by allowing only
effective physical characteristic a, ;; to play an explanatory role in the skier’s choice
of sites. This hypothesis (3) is that a, = a; = a5 — a;, = 0. Model 4 includes the
effects of only prices, a,;, and a,;, therefore ag — a;4, = 0. Model 5 includes all the
explanatory variables except a,;, therefore a;y — a;, = 0. The full model (6) in-
cludes the effects of prices and all four EPCs. On the basis of likelihood ratio tests
the full model (6) predicts the allocation of the skier’s budget significantly better
(.005) than model 5, which predicts better than 4, which predicts better than 3,
which predicts better than 2, which predicts better than 1. Prices and the four EPCs
of the sites play a significant role in how the skier allocates his ski days amongst the
alternative sites.'”

"It is a hypothesis of the model that all the relevant EPCs have been included. This hypothesis could
be tested, in theory, by including fourteen dummy variables, one for each site, in the h function (2.4), and
then estimating the full model. The coefficients on the dummies would measure those specific site effects
not accounted for by the prices and the four included EPCs. The maintained hypothesis is therefore that
the inclusion of the dummies will not significantly increase the explanatory power of the model. This
hypothesis cannot be tested because the full model is then too large to estimate (28 parameters).
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A modified R? can be calculated to give us an indication of the model’s goodness
of fit.

R?=1— @t~/ D /1 — ¢@hp/T)  Baxter and Cragg 3, p. 230],
(5.3)

where

I%, =the log of the likelihood function if the null hypothesis is correct.
I, = —4021.451.
I}, =the log of the likelihood function if the hypothesis is correct. /% =
—3410.214.
T = the number of observations = 1453 ski trips.

R? =0.57. (5.4)

It is also of interest to examine the actual and predicted shares for the 15 sites.

The estimated model is consistent with the hypothesis of utility maximizing
behavior for each individual in the sample. For each individual /, the utility function
U(ﬁAi), is: (1) continuous, finite, and quasi concave in 17, > 0,5; and (2) 3U/9y;; >
ovj.

Conventional theory has suggested and empirical testing has confirmed that prices
play an important explanatory role in the consumer’s allocational behavior. But,
characteristics of the activities and the consumer’s ability to utilize those characteris-
tics, also help to explain allocational behavior. Too often this hypothesis remains
untested. Table V lists the predicted shares. The vectors of predicted shares vary
across individuals in my sample because of variations in skiing ability and dispersion
in the location of residence.

A number of allocational patterns can be discerned. First, an individual’s pre-
dicted share for a specific site decreases as the distance increases between the site
and his residence. The sites’ share elasticities with respect to a change in the distance
to the sites are all negative, falling in the range of 0 to — 1. This property was first
recognized by Clawson [7] and now forms the basis of the travel-cost technique. This
result is not unexpected considering that automobile operating costs and the value of
the individual’s time while traveling are the major variable components of skiing
costs at the different sites.

TABLE IV
Actual and Predicted Shares
P
% o - g g = 4 %
£ g g = E 39 ™ 2 S O § 5 5
& 2 ~ = g g 2 3 = - 5 g 3
[N =] ] = S 7] L =] _ )
¢ 3 £ §: & £ : 2 4 § ¢ 3 B 8 %
< 5 < A 3 2 a O 4 = =2 B o B
Actual
share 020 0.6 012 007 009 016 00! 002 006 003 005 001 001 001
Predicted

share 021 O0.16 009 008 0.3 0.3 003 002 004 002 004 002 00t 002
% Bias +1% 0 -3% +1% +4% —3% +2% 0 2% —1% —1% +1% 0 +1%
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TABLE V

« §;, The Predicted Shares

Brecken- Love- Winter Broad- Crested

~
]

Aspen Vail A-Basin ridge land Park moor Butte
N 0.1731 0.1395 0.0851 0.0645 0.1260 0.1702 0.0590 0.0194
Denver I 0.1480 0.1171 0.1056 0.0819 0.1539 0.1631 0.0391 0.0178
A 02208 0.1932 0.0957 0.0816 0.1242 0.1195 0.0173 0.0112
N 0.1727 0.1380 0.0833 0.0634 0.1231 0.1667 0.0507 0.0187
Boulder I 0.1484 0.1164 0.1038 0.0808 0.1511 0.1605 0.0275 0.0173
A 02209 0.1917 0.0939 0.0803 0.1217 0.1173 0.0149 0.0108
Ft. N 0.1867 0.1413 00798 0.0619 0.1170 0.1604 0.0507 0.0202
Collins I 0.1609 0.1194 0.0997 0.0792 0.1439 0.1549 0.0276 0.0187
A 02371 0.1947 0.0893 0.0779 0.1147 0.1121 0.0148 0.0116
N 01862 0.1420 00810 0.0627 0.1188 0.1626 0.0545 0.0208
Greeley I 01599 0.1196 0.1008 0.0798 0.1457 0.1565 0.0296 0.0192
A 02361 0.1954 0.0905 0.0787 0.1163 0.1135 0.0159 0.0119
N 01703 0.1402 0.0878 0.0661 0.1305 0.1753 0.0483 0.0184
Golden I 01447 0.1169 0.1083 0.0833 0.1583 0.1669 0.0259 0.0168
A 02159 0.1929 0.0982 0.0830 0.1278 0.1223 0.0141 0.0105
AirForce N
Academy I  0.1694 0.1112 0.0894 0.0809 0.1289 0.1390 0.0727 0.0268
A 02540 0.1844 0.0815 0.0810 0.1046 0.1023 0.0396 0.0169
Colorado N
Springs I  0.1755 0.1162 0.0828 0.0856 0.1193 0.1288 0.0810 0.0279
A 02615 01915 0.0750 0.0852 0.0961 0.0942 0.0438 00175
N 0209 0.1314 0.0617 0.0613 0.0898 0.1244 0.1249 0.0359
Pueblo I 01850 0.1138 0.0789 0.0803 0.1131 0.1231 0.0697 0.0340
A 02746 0.1868 0.0712 0.0796 0.0908 0.0897 0.0376 0.0212
N
Alamosa I 0198 0.1315 00764 0.0764 0.0979 0.0922 0.0274 0.0402
A
N 0.2425 0.1537 0.0602 0.0597 0.0782 0.0930 0.0436 0.1061
Gunnison I 02036 0.1266 0.0734 0.0742 0.0937 0.0875 0.0231 0.0956
A 02960 02036 0.0648 0.0721 0.0737 0.0625 0.0122 0.0584
N
Durango I 02716 0.1063 0.0606 0.0590 0.0790 0.0783 0.0157 0.0487
A 03745 0.1622 0.0507 0.0544 0.0589 0.0530 0.0078 0.0282

Examination of the predicted shares (Table V) and amounts of terrain and VTF at
the sites (Table II) shows that the shares tend to be directly related to the size of the
area in terms of terrain and VTF.

It is interesting that the shares depend on the level of the individual’s skiing
ability. Everyone is attracted to Aspen and Vail, but for all residential locations
Aspen’s and Vail’s shares are highest for the advanced skier. Advanced skiers,
relative to others, are attracted to areas with immense amounts of terrain, probably
because they are the only ones with the ability and speed to ski the entire mountain.
The advanced skier does not become bored with lack of variety of terrain. On the
other hand, novice and intermediate skiers seem to like Winter Park and Loveland
relatively more than advanced skiers do, probably because most of the terrain is
designed for their ability levels (see Table II). Novices are more attracted to the
smaller areas than are the intermediate and advanced skiers. This is probably due to
the fact that there is sufficient terrain at the small areas to challenge a novice skier,
whereas the intermediate and advanced skier, who genérally skies much more and
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TABLE V—Continued

Lake Mt.  Wolf Purga- Hidden
» »f= Eldora Monarch Wemer Creek tory Cooper Valley

N 00694 0.0085 0.0266 0.0214 0.0030 0.0178 0.0167
Denver I 00475 0.0208 0.0458 00186 0.0040 0.0318 0.0122
A 00416 0.0133 0.0333 0.0141 0.0045 0.0191 0.0105
N 00859 0.0080 0.0263 0.0206 0.0029 0.0175 0.0221
Boulder I 0059 00199 0.0457 0.0181 0.0039 0.0315 0.0163
A 00516 00127 0.0331  0.0136 0.0045 0.0191 0.0141
Ft. N 00755 0.0082 0.0275 0.0221 00032 00172 0.0282
Collins I 0.0521 0.0203 0.0478 0.0194 0.0044 0.0311 0.0207
A 0.0450- 0.0128 0.0343 0.0145 0.0050 0.0186 0.0177
N 00673 0.0086 0.0276 0.0226 0.0033 0.0174 0.0249
Greeley I 00463 0.0212 0.0477 0.0198 0.0044 0.0313 0.0183
A 0.0401 00134 0.0343 0.0148 0.0050 0.0187 0.0156
N 00708 0.0081 0.0265 0.0204 0.0028 0.0182 0.0165
Golden I 00482 0.0198 0.0454 00176 0.0037 0.0323 0.0120
A 00422 00127 0.0330 0.0133 0.0043 0.0196 0.0104
Air Force N
Academy I  0.0382  0.0306 0.0431 0.0231 0.0050 0.0315 0.0120
A 00336 00197 0.0315 0.0175 0.0057 0.0191 0.0089
Colorado N
Springs I  0.0351 0.0324 0.0435 0.0241 0.0051 0.0332 0.0095
A 00307 00207 0.0316 0.0181 0.0058 0.0201 0.0082
N 00462 0.0165 0.0244 0.0390 0.0051 0.0181 0.0119
Pueblo I 00326 00417 0.0434 0.0351 0.007t 0.0333 0.0090
A 00284 0.0266 0.0314 0.0263 0.0080 0.0201 0.0077
N
Alamosa I 00194 0.0563 0.0415 0.0846 0.0131 0.0395 0.0051
A
N 00274 0.0285 0.0232 0.0454 0.0101 0.0221 0.0066
Gunnison I  0.0185 0.0687 0.0393 0.0389 0.0133 0.0388 0.0047
A 00157 0.0429 0.0278 0.0285 0.0148 0.0229 0.0040
N
Durango I 00166 0.0340 0.0324 0.1070 0.0572 0.0286 0.0051
A 00134 0.0201 0.0218 0.0745 0.0604 0.0160 0.0041

much faster during a day of skiing, would quickly become bored with the small
amounts of terrain. Ability levels in conjunction with the amount and types of
terrain at the different areas affect the consumer’s allocation of ski days.

5.B. Price and Characteristic Elasticity Estimates

Further insights can be gained into the nature of our estimated share equations
and their underlying preference ordering by examining the share elasticities.
Site j’s share elasticity with respect to a change in the price at site j, is:
Ego = —6(1—3)). (5.5)
These elasticity estimates are all negative, because —é is negative. They vary
between —1.24 and —1.98. Skiers are responsive to cost changes.
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Site m’s share elasticity with respect to a change in the price at site j is:
Efm?j =3§6. (5.6)

These cross-elasticities are all positive by assumption. They fall between zero and
0.73. As the individual’s predicted share for a given site increases, the more
responsive his allocation among sites becomes to changes in that site’s price.

We now examine site j’s predicted share elasticities with respect to a change in the
amount of a,; at that site.

E;, =E; Ep, . (5.7)

Ey ,,, can be interpreted as a monotonic transformation of the proportionate amount
by which the utility of a ski day increases when the amount of skiable terrain at the
site increases by one percent. The elasticity (5.7) is equal to site j’s predicted share
elasticity with respect to a change in the amount of a, ,; at the site.

Eg,, = Egg,, - (5.8)

This follows because Aa,; = Aag; when a,; and the other EPCs are held constant.
These two elasticities measure how responsive a site’s predicted share is to an
increase in skiable terrain when the increase is completely in terms of terrain that is
designed for individuals of lesser skiing ability. All of these characteristic elasticities
are positive, except for advanced skiers at Vail (see Table VI). An individual’s
predicted share for a given site increases as the amount of terrain at that site on
which he is capable of skiing increases. The more terrain he can ski on, the more
variety he has, and the less bored he should become. This should increase his
enjoyment of the area.

The individual’s share elasticity for site j with respect to a change in the amount of
a,; is:

Egar, = Eipy Eie,,- (5.9)

These elasticities are most interesting. Table VII lists them for the residents of five
cities. They are predominantly negative, but mixed in sign for advanced skiers. A
negative characteristic elasticity of this type says that as the proportion of skiable
terrain at an area designed specifically for your skiing ability increases, while
holding total skiable terrain constant, your demand for skiing at that area decreases.
These elasticity estimates are quite reasonable when we remember that skiing ability
was measured in terms of the individual’s capabilities rather than preferences. When
an intermediate skier is defined as a skier who has the ability to ski on both novice
and intermediate terrain, we should not be too surprised if he happens to enjoy the
novice terrain relatively more. The intermediate terrain might be forcing him to the
limits of his ability—a situation which every individual does not necessarily enjoy. If
this is the case, one would expect his enjoyment of the site to in fact decrease when
the amount of a,; increases holding a,; constant. This argument might also explain
the fact that the elasticities for advanced skiers at Aspen, Vail, and a few of the other
sites are positive. The advanced category is open ended and will therefore include
people who enjoy skiing the advanced terrain and others who do not. For example,
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TABLE VI

Brecken- Love- Winter Broad- Crested

J= Aspen Vail A-Basin ridge land Park moor Butte
N 2271 4339 1.686 1.606 1,610 1246 0.2103 1.835
Denver I 241 5077 1257 1.349 1.251 09531 0.1336 0.7292
A 00103 —1.689 0.8303 0.9587 0.5271 04849 0.1186 0.7412
Ft. N 2234 4330 1.696 1.610 1.626 1261 02122 1.833
Collins I 2405 5.064 1.265 1.353 1.266 0.9625 0.1342 0.7286
A 00101 —1.686 0.8365 09625 0.5328 04889 0.1171 0.7409
N 217 4380 1.729 1.611 1.676 1315 0.1956 1.804
Pueblo I 2335 5.097 1.294 1.351 1312 0.9987 0.1284 0.7172
A 0009 —1702 0.8528 09608 05472 0.5012 0.1144 0.7337
N 2081 4268 1.732 1.614 1.698 1.362 0.2138 1.673
Gunnison I 2282 5.023 1302 1.360 1340  1.039 0.1348 0.6714
A 00093 —1.667 0.8587 09686 05575 05162 0.1174 0.7057
N
Durango I 2087 5.139  1.320 1.382 1362  1.050 1.358  0.7063
A 00083 —1754 08716 0.9871 0.5664 05215 0.1180 0.7284
Lake Mt. Wolf  Purga- Hidden
J = Eldora Monarch Wemer Creck tory Cooper Valley
N 06839 1.718  2.028 0.7106 2183 2.856  0.8440
Denver I 1.026 1.358 1.557 0.7922 1457 1551 09136
A 04333 0.8715 0.6701 0.7523 1.342 0.6233 1.215
Ft. N 0679 1.718 2.016 0.7100 2.182 2.857 0.8341
Collins I 1.021 1.359 1553 07916 1456 1.552  0.9057
A 04318 0.8719 0.6694 0.7519 1.342 0.6237 1.207
N  0.7009 1.704 2.023 0.6978 2.178 2.855 0.8481
Pueblo 1 1.042 1.329 1.560 0.7789 1452 1549 09166
A 04393 08598 06714 0.7429 1.337 0.6228 1219
N 07147 1.683 2.025 0.6931 2167 2.843 0.8526
Gunnison I = 1.057 1292  1.567 07759 1443 1540 0.9205
A 04450 0.8453 06738 0.7412 1328 0.6210 1.223
N
Durango I 1.059 1.340 1.578 0.7209 1379 1556  0.9202
A 04461 0.8654 0.6783 0.7061 1.267 0.6254 1.223

the advanced skiers at Vail must gain their most enjoyment by skiing on advanced
terrain.
Given the fact that the individual generally reacts adversely when the proportion
. of the terrain at a site designed specifically for his level of skiing ability increases
(a,; constant), one wonders what happens to site j’s predicted share when the
amount of a,; and a,; increase in equal amounts. The elasticity measuring this
response equals the sum of the characteristic elasticities (5.7) and (5.9).

Eq,, |Ba,y; = Aa,; = E;

S, + E@“:j :

(5.10)

S

Examination of Tables VI and VII show that these are predominantly positive
except for Aspen and Vail. These characteristic elasticities generally lead to the
conclusion that a site’s predicted share increases when ag; or a,; increases, but that
novice and intermediate skiers respond more positively to an increase in ag; than an
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TABLE VII
Ef/“:i
o Brecken-  Love- Winter  Broad-  Crested
J = Aspen Vail  A-Basin  ridge land Park moor Butte
N —2415 -—4564 —1.012 —09152 —1.042 —0.8953 ~0.3824 —1.294
Denver I —2680 —6335 —05444 —06353 —0.6515 —0.4440 —0.1169 —0.0251
A 0.0748 1.097 —-0.1230 —02334 0.0645 —0.6210 —0.1168 —0.0347
Ft. N —2375 —4555 —1617 —09177 —1.052 —0.9058 —0.3838 —1.293
Collins I —2639 —6.318 —05479 —0.6372 —0.6591 —04484 —0.1174 -0.0251
A 0.6732 1.095 —0.1239 —0.2343 00652  0.0212 —0.1171 —0.0347
N 2308 —4607 —1.038 —09183 —1.085 —09446 —03556 —1.272
Pueblo I —2563 —6359 —0.5606 —0.6364 —0.6829 —0.4625 —0.1123 —0.0247
A 0.0696 1106 —0.1263 —02339  0.0670  0.0217 —0.1144 —0.0343
N  —2212 —4489 -1039 —09200 —1.099 —09785 —0.3887 —1.180
Gumnison I —2505 —6.267 —0.5640 —0.6406 —0.6978 —0.4841 —0.1180 —0.0231 .
A 0.0676 1.083 —0.1272 —0.2358  0.0682  0.0224 —0.1174 —0.0330
N
Durango I —-2291 -—6412 -05718 —06511 —0.7091 —0.4890 —0.1189 —0.0243
A 0.0600 L139 —0.1291 —02403 00693 00226 —0.1180 —0.0341
Lake Mt. Wolf Purga- Hidden
J= Eldora Monarch Wemer  Creek tory Cooper  Valley
N —04749 —0.3435 —0.9991 —0.0789 —0.8237 —1632 —0.5137
Denver I —07327 -03134 —0.6671 —0.0660 —0.2869 —0.5171 —0.4299
A -00228 01226 0.1197 00 —0.2833 02032 —0.7125
Ft. N —04718 —0.3436 —0.9981 —0.0788 —0.8235 —1633 —0.5077
Collins I —0.7292 —03136 —0.6657 —0.0659 -0.2868 —0.5175 —0.4262
A —00227 0.1226 —1195 0.0 —0.2832 02034 —0.7073
N —04868 —0.3407 —1.001 —0.0775 —0.8220 —1.631 —0.5162
Pueblo I —07422 —03067 —0.6687 —0.0649 —0.2860 —0.5163 —0.4313
A —0.6231 0.1189 01203 0.0 —0.2824  0.2031 -0.7145
N —04963 —03366 —1.003 —0.0770 —0.8179 —1.625 —0.5190
Gunnison I —0.7551 —0.2981 —0.6716 —0.0646 —0.2843 —0.5134 —0.4332
A —00234 0.1189 01203 0.0 —0.2804 02025 —0.7172
N
Durango I —07565 —03092 —0.6764 —0.0600 —02716 —0.5188 —0.4330
A  -—00234 01217 0.1211 0.0 —0.2675 02039 —0.7171

increase in a, ;. For advanced skiers their relative preferences for increases in a, ,and
ag,; are mixed.
The individual’s share elasticities for site j with respect to a, ; and a,; are:

= —E.

b2/

n=3,4. (5.11)

5jan; ’:j“nj’
The elasticities w.r.t. a4 ,(VTE,) are predominantly positive (see Table VIII for
examples). This is as expected. Normally as VTF increases, everything else constant,
lift lines decrease and more skiing becomes possible. However, if VTF is very high in
proportion to skiable terrain, the slopes will become quite crowded and one would
then expect that increasing VTF will make skiing less enjoyable. This explains the
negative elasticities for Wolf Creek and some ability categories at other sites (novices
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N TABLE VIII
E‘Ejall
e Brecken-  Love- Winter  Broad- Crested
: J=  Aspen Vail A-Basin ridge land Park moor Butte
N —00277 -—04005  0.4838 0.3853 0.3077  0.5538 2.944 1.622
Denver I 0.1153 —0.1281 - 0.3282 0.2698 02322 04381 2.605 1.220
A 03533 03796  0.3260 0.2712 0.3496  0.5165 2.604 1.135
N —00253 -03939 04970 0.3874 03246  0.6053 2.993 1.479
Gunnison I 0.1078 —0.1267  0.3400 0.2720 0.2487 04776 2.629 1.123
A 03192 —-03747 03371 0.2740 0.3698  0.5499 2.617 1.081
Efja. Y,
N —3628 —09429 -—1114 —3051 —2190 -—2280 -—2.141 —0.6567
Denver I —1.538 1875 —0.0400 -—0.9921 —06128 —1.131 —1.887 —0.5783
A —0.8209 08250 0.1661 —04604 —05863 —1.049 —1.853 —0.3359
N —3324 09274 -—1.145 —3.067 —2309 —2492 —2.176 —0.5987
Gunnison I  —1438 1.855 —0.0414 —1.000 —0.6563 —1233 —1.904 —0.5325
A —0.7417 0.8144 01717 —4.652 —0.6201 —1.117 —1862 —0.3198
i E.f/ag '
Lake Mt. Wolf Purga- Hidden
J= Eldora Monarch Werner Creek tory Cooper  Valley ‘
N 2.489 0.0381 —0.0999 —04145 0.9061 1.412 4.293 -
Denver 1 1.949 0.0298 0.0 —0.2641 0.5518  0.7182 317t
A 1.631 0.0817  0.1755 —0.1991 0.3877  0.7994 2473
N 2.601 0.0374 —0.1003 —0.4043 0.8996 1.406 4337
Gunnison I 2.009 0.0283 0.0 —0.2586 0.5466  0.7130 3.195
A 1.675 0.0792  0.1765 —0.1962 0.3838  0.7965 2489
Etya,,
N -—-2678 13.13 —0.9991 7.816 0.7413 3.169 —4.440 ‘
Denver I —1.363 6.194 0.3891 5.691 08387 2126 —2.795
A —1186 5.447 0.0957 4923 1.163 1.734 —1.425
N 2799 12.86 —1.003 7.625 0.7361 3.156 —4.486
Gunnison I  —1.404 5.891 0.3918 5.573 08309 2111 —2816
A —1218 5.283 0.0962 4.851 1.151 1728 —1434

at Mt. Werner, novices and intermediates at Vail and novices at Aspen). The ratios
VTFE,/a, ; are very high for these groups.
The elasticities w.r.t. a,; (average annual snowfall) are mixed in sign. They vary

from —4.4 to 13.1 (see Table VIII for examples), and tend to increase as a,;
increases. More snow, at those sites known for their large snowfall (e.g., Monarch
and Wolf Creek), has a strong positive effect on their shares. Novices react more
than intermediates to changes in a,;, and intermediates react more than advanced
skiers. Snowfall influences the skiing experience in a number of ways. Increased
snow, assuming proper grooming, makes the snow more enjoyable to ski on, but
visibility is detrimentally affected while the snow is actually falling. The magnitude
of these opposing effects for different groups at the different sites might explain the
variations in the elasticities.
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The cross-elasticities with respect to the four EPCs (a,;, a,;, a3, a,;) are:

E.

bnan; = —Eg,yEia, n=1,2,3,4. (5.12)

The ski area business is extremely competitive, which makes the operators quite
interested in their market shares. The individual areas could use the estimated
elasticities to increase their ticket sales and market shares. For example, if A-Basin
had increased its 1967 /1968 intermediate acreage by one percent, by converting
advanced terrain into intermediate terrain, the model predicts that the proportion of
the advanced skiers’ trips to A-Basin would have increased by approximately 0.12%,
the proportion of intermediate skiers’ trips to A-Basin would have increased by
approximately 0.71%, and the proportion of novice skiers’ trips would have re-
mained unchanged. This suggests that A-Basin could have sold more tickets simply
by grooming out some moguls. Whereas if Loveland had done the same thing, the
proportion of advanced skiers’ trips to Loveland would have decreased by ap-
proximately 0.06%, and the proportion of intermediate skiers’ trips would have
increased by approximately 0.60%. The optimality of such a move would then
depend on how popular the area is with intermediates relative to advanced skiers.
Maybe in winter the conversion would not be advisable, but if springtime brings out
relatively more intermediates, then maybe Loveland should have fewer moguls in the
spring. This phenomenon seems to occur in the later part of the season at many
areas. The effect of changing lift ticket prices or other physical characteristics could
also be calculated.

The model can be used to calculate predicted shares for a proposed site. One just
needs to know: the site’s proposed location, average annual snowfall, types and
amount of terrain, VTF, and anticipated ticket price.

The model can be aggregated across individuals to provide ticket sale estimates.
This just requires additional data on the number and types of skiers residing in each
city. The model assumes that total ski days are predetermined; this is a deficiency,
but not one that makes the model void of policy implications. Making total ski days
an endogenous variable would require a much more complex model for which the
data are not available.

6. SUMMARY AND CONCLUSIONS

The purpose of this research was four-fold. First, I obtained a system of share
equations for site-specific recreational activities which are consistent with an un-
derlying theory of constrained utility maximizing behavior. Second, I incorporated
the important physical characteristics of the recreational sites directly into the utility
function in such a way that the individual’s production technology (in this case
skiing ability) would limit the individual’s ability to utilize the characteristics.
Inclusion of the EPCs resulted in identical share equations, a useful result. Third, I
specified a density function for the shares that is consistent with the shares’ inherent
properties. Finally, I estimated this model and confirmed my basic hypothesis that
both prices and the EPCs play an important explanatory role in the individual’s
allocation of ski days amongst sites.

Most of the previous work on recreational demand has utilized the travel-cost
technique (pioneered by Clawson [8]), a technique which recognizes the strong
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statistical relationship between a site’s predicted share and the distance from that
site to the individual’s residence, but lacks a strong foundation in basic consumer
theory. My model recognizes and confirms the hypothesis that travel costs are
important and also gives it a strong theoretical foundation.

A large proportion of the variation in the data was explained by the model. The
elasticity estimates are not unreasonable, and offer practical insights into the
behavior of the skier. The nonquantified operating postulates of the managements of
most ski areas are confirmed and quantified.

APPENDIX: HOW THE CONDITIONAL MULTINOMIAL
(POLYCHOTOMOUS) LOGIT MODEL CAN BE USED TO MODEL THE
CONSTRAINED UTILITY MAXIMIZING BEHAVIOR OF INDIVIDUALS
WHO ARE TRYING TO DECIDE WHERE TO SKI™®

The conditional multinomial logit model (hereafter referred to as the logit model)
was designed to explain population choice on the basis of individual decision rules,
where the individuals take explicit account of the fact that there is only a small
number of alternatives from which to choose. This suggests that it might be
applicable to the problem of determining where the individuals in a population will
ski. The skiers analyzed have only 15 alternative areas from which to choose. A visit
to one precludes the possibility of visiting another on the same day, so the choice set
is lumpy. My intent is to show that logit analysis can be used to model the skiers’
behavior. It turns out that my model explains more of the variation in the data than
the logit model.

The individual, on each day he goes skiing, is able to choose from amongst 15 ski
areas. Let B describe this set of alternatives:

B={X', X%,..., X",

where X/ is a vector of the characteristics of a day trip to site j. On a given day the
individual will choose to visit the site that provides the greatest amount of utility.
The utility he receives from one day of skiing at site j is: '

U(x/,C)=v(x/,C) +n(Xx’,C), (A.1)
where

V(X/,C)is identical for all individuals with the vector of
socioeconomic characteristics C.

n( X/, C) varies across those individuals.

"For an extensive survey of conditional multinomial logit models, see McFadden [19] and/or
Domencich and McFadden [14].

191t should be noted that the utility the individual receives from a day trip to site j does not depend on
where the individual skied or plans to ski on other days. There is constant returns to scale in the
production of utility from one-day trips to site j, i.e., diminishing marginal utility associated with multiple
visits to a site is disallowed by assumption. Ski days are strongly separable (additive) in the individual’s
seasonal utility function. This strong separability across days in conjunction with the fact that only one
site can be visited per day implies that the utility function is also effectively additive across sites (the
utility received from site j is independent of the characteristics of the other sites).
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The probability that an individual randomly drawn from the population will choose
to visit site j on a given day is therefore

P, = Prob[U(X/,C) > U(X*,C) fork #j,k=1,2,...,15]

s

= Prob[n(X*,C) —a(X/,C) < V(X/,C) = V(X5,C)  (A2)
fork #j,k=1,2,...,15].

Logit analysis specifically assumes that the random variable 7,( X/, C)—where i
refers to individual i—has a Weibull distribution.

Prob[n, <n] =e """, (A.3)

in which case the probability that individual i with socioeconomic characteristics C;
will visit site j on a given day is: %

_ 15
P, =Prob[X/|C] = ev,-(xif,c.-)/ S YUXECo, (A4)
k=1

Logit analysis normally assumes that the nonstochastic component of the utility
function is a function of the EPCs of the alternative chosen. The EPCs in my model
are a,; — a,;, and y; (the cost of a one-day trip to site ). I therefore assume that: !

V(X/,C) =8+ B + Byay; + Byay; + Byay; + Bsay; (A.5)

It then follows that:

15
P, = Prob[X,f| C:] = l/kgle[ﬁl(yk - Yj) + By(ay — alj) + By(ay, — aZj)
+B4(as — ay;) + Bs(ay — a4j)]‘ (A.6)

If an individual’s choice of ski trips during the ski season are statistically
independent, then the probability of observing a given vector of shares
(s, §3,..., 85) for an individual randomly chosen from the population is:

T B .. ’
f(sli’ 52,-,---’515,) = v|5, _I;Il(%i)y]" (A7)
j=

II 5!
Jj=1

2For details see Domencich and McFadden [14, pp. 61~69).

21t is of course possible to generalize this function somewhat without abandoning its linear form. For
example, I could have used a linear 2nd-order approximation to any function in five variables. This would
substantially increase the number of variables.
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TABLE IX
Maximum Likelihood Estimates for the Logit Model
1* B, B, By B, - Bs
—3528.001 -0.117902 0.000208 —0.000314 0.000152 0.003610
where

Y;; is the number of units of ski activity j produced per season by
individual #, where one unit of y; is one day of skiing at site ;.
15
=2V = ni/T
k=1

If the choice of sites by one individual is completely independent of any other
individual’s choice, the log of the likelihood function for a sample of 163 skiers is:

163 15
I=2 2 y;log(P,)

i=1 j=1
163 15

=—-3 2 ylog

i=1j=1

15

k=1

+B4i(a3, — as;) + Bs(ay — a4j)}]'

2 e{Bl(Yk - 'Yj) + By(ay — alj) + Bs(ay — a2j)

The maximum likelihood estimates of the B parameters were obtained using a
Newton-type search algorithm. McFadden [19, pp. 119-120] and others, have shown
that, under very general conditions, the maximum likelihood estimates are con-
sistent, asymptotically efficient, and asymptotically normally distributed. The mod-
ified R? and examination of actual and predicted shares give us an indication of the
model’s goodness of fit vis-a-vis my model. Examination of these statistics indicates
that my model predicts the skiers choice of sites better than the logit model. The
predicted shares (the probability that a given individual will visit a given site on a
given day), are reported in Table XI. The logit model has some advantages but I
think that overall my model is better than the logit model in explaining skier

behavior.
TABLE X
Actual and Predicted Shares—The Logit Model
2 >
o - b1 « L
o0 = e 2 & I v
0 . &£ 5 & & 5 o3 3
-5 g g - g o M o S S5 & " &
g 3 -] - g 9 k] ] = ] 3
8 s & % % : % § 3 £ I 5 8B & 3
2§ & & 3 8§ & &§ 3 3 £ g & § E
Actual
share 020 o016 021 007 009 0.16 001 001 006 003 005 0.1 00! 001 00l
Share pre-
dictedby 022 - 0.15 007 008 010 009 003 00! 005 004 004 003 001 004 0.05
the model
% Bias +2% —1% —5% +1% +1% —-7% +2% 0 ‘ —~1% +1% —1% +2% 0 +3% +4%
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TABLE XI
B, The Estimated Probabilities
Brecken- Love- Winter « Broad- Crested
J= Aspen Vail A-Basin ridge land Park moor Butte
N 0.1931 0.1111 0.0856 00895 0.1156 0.1034 0.0281 0.0119
Denver I 0.1966 0.1094 00857 0.0889 0.1158 0.1044 0.0278 0.0121
A 02337 02024 00698 00720 0.0968 0.0858 0.0219 0.0096
N 0.1892 0.1089 0.0839 00877 0.1132 0.1013 0.0239 0.0110
Boulder I 01927 0.1072 0.0840 0.0872 0.1135 0.1024 0.0237 0.0112
A 02300 0.1992 0.0687 0.0708 0.0953 0.0844 0.0187 0.0088
Ft. N 0.1848 0.1063 0.0819 0.0856 0.1106 0.0989 0.0246 0.0105
Collins I 0.1883 0.1047 0.0821 0.0852 0.1109 0.1000 0.0244 0.0106
A 02258 0.1955 00674 0.0696 0.0935 0.0829 0.0194 0.0085
N 0.1874 0.1074 0.0831 0.0868 0.1121 0.1003 0.0268 0.0114
Greeley 1 0.1909 0.1061 00832 00863 0.1124 0.1014 0.0265 0.0116
A 02282 0.1977 00682 0.0703 0.0945 0.0838 0.0210 0.0092
N 0.1959 0.1128 0.0868 0.0908 0.1173 0.1049 0.0223 0.0114
Golden I 0.1995 0.1109 00869 0092 0.1175 0.1060 0.0221 0.0116
A 02363 02047 00706 0.0728 0.0979 0.0867 0.0173 0.0091
Air Force N
Academy I  0.2173 0.0948 0.0705 0.0870 0.0952 0.0859 0.0616 0.0218
A 02607 0.1770 0.0580  0.0711 0.0804 0.0712 0.0489 0.0174
Colorado N
Springs I 02300 0.1003 0.0627 0.0921 0.0847 0.0764 0.0652 0.0230
A 02731 0.1855 00510 0.0745 0.0708 0.0627 00513 0.0182
N 0.2206 0.0913 0.0561 0.0830 0.0757 0.0677 0.0632 0.0290
Pueblo I 02247 0.0898 00562 0.0825 0.0759 0.0684 0.0626 0.0295
A 02707 0.1685 00464  0.0677 0.0643 0.0570 0.0499 0.0236
N
Alamosa I 02218 0.0993 0.0466 0.0673 0.0529 0.0368 0.0203 0.0335
A
N 0.2481 0.0999 0.0457 00671 0.0519 0.0358 0.0166 0.0927
Gunnison I 02524 0.0983 0.0457 0.0666 0.0519 0.0361 0.0165 0.0940
A 02987 0.1812 0.0371 0.0537 0.0432 0.0295 00129 0.0739
N
Durango I 0.2839 0.0476 0.0221 0.0322 0.0251 0.0175 0.0058 0.0360
A 03524 00920 00188 00273 00219 00150 0.0047 0.0297
TABLE XI—Continued
Lake Mt. Wolf Purga- Hidden
J = Eldora Monarch Werner Creek tory Cooper Valley
N 00574 0.0369 0.0427 0.0292 0.0071 0.0452 0.0432
Denver I 00566 0.0364 0.0424 0.0288 0.0071 0.0453 0.0427
A 00454 0.0292 0.0349 0.0228 0.0056 0.0368 0.0336
N 00699 0.0340 0.0419 0.0269 0.0066 0.0443 0.0574
Boulder I 0.0689 0.0336 0.0416 0.0266 0.0065 0.0444 0.0568
A 0.0555 0.0270 0.0344 0.0211 0.0052 0.0362 0.0448
Ft. N 00682 0.0324 0.0409 0.0263 0.0062 0.0433 0.0794
Collins I 00673 00319 0.0406 0.0260 0.0062 0.0434 0.0785
A 00545 0.0258 0.0338 0.0207 0.0049 0.0355 0.0623
N 00597 0.0352 0.0415 0.0278 0.0068 0.0439 0.0695
Greeley I 0.0589 0.0347 0.0412 0.0275 0.0067 0.0440 0.0687
A 0.0475 0.0280 0.0341 0.0219 0.0053 0.0360 0.0543
N 0.0567 ' 0.0352 0.0434 0.0279 0.0068 0.0459 0.0420
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TABLE XI—Continued

R G Lake Mt.  Wolf Purga- Hidden
’ “J= Eldora Monarch Werner Creek tory Cooper Valley

—

Golden I 0.0559 0.0347 0.0430 0.0275 0.0067 0.0460 0.0415
A 00447 0.0277 0.0353 0.0216 0.0053 0.0372 0.0325

Air Force N
Academy I  0.0405 0.0595 0.0349 0.0369 0.0090 0.0440 0.0352
A 00377 0.0481 0.0290 0.0294 0.0072 0.0360 0.0279

Colorado N
Springs I 0.0414 0.0629 0.0350 0.0391 0.0096 0.0465 0.0313
A 00332 0.0504 0.0288 0.0308 0.0075 0.0377 0.0246
N 00376 0.0867 0.0316 0.0674 0.0164 0.0453 0.0283
Pueblo I 00371 0.0856 0.0314 0.0666 0.0163 0.0455 0.0280
A 00302 00695 0.0262 0.0533 0.0130 0.0374 0.0223

N
Alamosa I  0.0142 0.1068 0.0247 0.1741 0.0426 0.0502 0.0091

A
N 00141 0.1288 0.0247 0.0707 0.0456 0.0497 0.0087
Gunnison I  0.0139 0.1269 0.0245 0.0697 0.0452 0.0497 0.0086
A 00111 0.1013 0.0201 0.0549 0.0355 0.0402 0.0067

N
Durango I 0.0067 0.0469 0.0086 0.2151 0.2228 0.0241 0.0056
A 0.0056 0.0393 0.0074 0.1775 0.1835 0.0204 0.0046
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